RMWeerasinghe's picture
Training complete
35d58b0 verified
---
license: apache-2.0
library_name: peft
tags:
- summarization
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
base_model: google/flan-t5-base
model-index:
- name: flan-t5-base-finetuned-QLoRA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-finetuned-QLoRA
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0780
- Rouge1: 0.2435
- Rouge2: 0.1079
- Rougel: 0.1991
- Rougelsum: 0.2302
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 12.7942 | 1.0 | 250 | 10.7766 | 0.2346 | 0.1022 | 0.1834 | 0.2154 |
| 3.0774 | 2.0 | 500 | 2.5061 | 0.2351 | 0.1094 | 0.197 | 0.2204 |
| 2.1947 | 3.0 | 750 | 1.4702 | 0.2403 | 0.1104 | 0.1997 | 0.2261 |
| 1.7687 | 4.0 | 1000 | 1.2326 | 0.247 | 0.1148 | 0.2024 | 0.2307 |
| 1.4731 | 5.0 | 1250 | 1.1516 | 0.2538 | 0.1203 | 0.2074 | 0.2381 |
| 1.4802 | 6.0 | 1500 | 1.1120 | 0.2432 | 0.1102 | 0.1993 | 0.2271 |
| 1.3568 | 7.0 | 1750 | 1.0945 | 0.2427 | 0.1089 | 0.1991 | 0.2279 |
| 1.4054 | 8.0 | 2000 | 1.0843 | 0.2428 | 0.1076 | 0.1993 | 0.2293 |
| 1.3151 | 9.0 | 2250 | 1.0795 | 0.2432 | 0.1076 | 0.1991 | 0.2299 |
| 1.2669 | 10.0 | 2500 | 1.0780 | 0.2435 | 0.1079 | 0.1991 | 0.2302 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1