|
--- |
|
base_model: dccuchile/bert-base-spanish-wwm-uncased |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: RafaelMayer/bert-copec-1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# RafaelMayer/bert-copec-1 |
|
|
|
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.1258 |
|
- Validation Loss: 0.4666 |
|
- Train Accuracy: 0.7647 |
|
- Train Precision: [0. 0.8125] |
|
- Train Precision W: 0.6691 |
|
- Train Recall: [0. 0.92857143] |
|
- Train Recall W: 0.7647 |
|
- Train F1: [0. 0.86666667] |
|
- Train F1 W: 0.7137 |
|
- Epoch: 9 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |
|
|:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:-----------------------:|:--------------:|:-----------------------:|:----------:|:-----:| |
|
| 0.5926 | 0.4830 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 1 | |
|
| 0.3224 | 0.5166 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 2 | |
|
| 0.2419 | 0.6137 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 3 | |
|
| 0.2583 | 0.5984 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 4 | |
|
| 0.2308 | 0.5345 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 5 | |
|
| 0.2178 | 0.4710 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 6 | |
|
| 0.1861 | 0.4562 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 7 | |
|
| 0.1456 | 0.4568 | 0.7647 | [0. 0.8125] | 0.6691 | [0. 0.92857143] | 0.7647 | [0. 0.86666667] | 0.7137 | 8 | |
|
| 0.1258 | 0.4666 | 0.7647 | [0. 0.8125] | 0.6691 | [0. 0.92857143] | 0.7647 | [0. 0.86666667] | 0.7137 | 9 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- TensorFlow 2.12.0 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|