Bert-Sentiment-Fa / README.md
Rasooli3003's picture
Sentiment Fa
a2ffc48 verified
|
raw
history blame
2.47 kB
metadata
library_name: transformers
license: apache-2.0
base_model: HooshvareLab/bert-fa-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: Bert-Sentiment-Fa
    results: []

Bert-Sentiment-Fa

This model is a fine-tuned version of HooshvareLab/bert-fa-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0154
  • Accuracy: 0.8333
  • F1: 0.8456

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 68 0.5588 0.8333 0.8419
No log 2.0 136 0.5678 0.8417 0.8557
No log 3.0 204 0.6083 0.8208 0.8311
No log 4.0 272 0.6749 0.8167 0.8285
No log 5.0 340 0.7690 0.8292 0.8424
No log 6.0 408 0.8706 0.8208 0.8328
No log 7.0 476 0.8554 0.8292 0.8424
0.0725 8.0 544 0.8950 0.825 0.8390
0.0725 9.0 612 0.9200 0.825 0.8390
0.0725 10.0 680 0.9511 0.8292 0.8455
0.0725 11.0 748 0.9698 0.8375 0.8490
0.0725 12.0 816 0.9829 0.8333 0.8456
0.0725 13.0 884 1.0022 0.8333 0.8456
0.0725 14.0 952 1.0130 0.8333 0.8456
0.0167 15.0 1020 1.0154 0.8333 0.8456

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1