|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: HooshvareLab/bert-fa-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: Bert-Sentiment-Fa |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Bert-Sentiment-Fa |
|
|
|
This model is a fine-tuned version of [HooshvareLab/bert-fa-base-uncased](https://huggingface.co/HooshvareLab/bert-fa-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0154 |
|
- Accuracy: 0.8333 |
|
- F1: 0.8456 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 1.0 | 68 | 0.5588 | 0.8333 | 0.8419 | |
|
| No log | 2.0 | 136 | 0.5678 | 0.8417 | 0.8557 | |
|
| No log | 3.0 | 204 | 0.6083 | 0.8208 | 0.8311 | |
|
| No log | 4.0 | 272 | 0.6749 | 0.8167 | 0.8285 | |
|
| No log | 5.0 | 340 | 0.7690 | 0.8292 | 0.8424 | |
|
| No log | 6.0 | 408 | 0.8706 | 0.8208 | 0.8328 | |
|
| No log | 7.0 | 476 | 0.8554 | 0.8292 | 0.8424 | |
|
| 0.0725 | 8.0 | 544 | 0.8950 | 0.825 | 0.8390 | |
|
| 0.0725 | 9.0 | 612 | 0.9200 | 0.825 | 0.8390 | |
|
| 0.0725 | 10.0 | 680 | 0.9511 | 0.8292 | 0.8455 | |
|
| 0.0725 | 11.0 | 748 | 0.9698 | 0.8375 | 0.8490 | |
|
| 0.0725 | 12.0 | 816 | 0.9829 | 0.8333 | 0.8456 | |
|
| 0.0725 | 13.0 | 884 | 1.0022 | 0.8333 | 0.8456 | |
|
| 0.0725 | 14.0 | 952 | 1.0130 | 0.8333 | 0.8456 | |
|
| 0.0167 | 15.0 | 1020 | 1.0154 | 0.8333 | 0.8456 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|