N_bert_agnews_padding100model

This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5818
  • Accuracy: 0.945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1815 1.0 7500 0.1891 0.9421
0.1362 2.0 15000 0.2013 0.9446
0.1152 3.0 22500 0.2381 0.9443
0.0809 4.0 30000 0.2646 0.9453
0.0598 5.0 37500 0.3089 0.9425
0.0405 6.0 45000 0.3708 0.9391
0.0387 7.0 52500 0.3904 0.9418
0.0212 8.0 60000 0.4448 0.9432
0.0225 9.0 67500 0.4465 0.9429
0.0145 10.0 75000 0.4374 0.9445
0.017 11.0 82500 0.4895 0.9438
0.0091 12.0 90000 0.4848 0.9443
0.0128 13.0 97500 0.4764 0.9455
0.0044 14.0 105000 0.5263 0.9449
0.0018 15.0 112500 0.5252 0.9447
0.0017 16.0 120000 0.5324 0.9468
0.001 17.0 127500 0.5503 0.9457
0.0006 18.0 135000 0.5748 0.9458
0.0002 19.0 142500 0.5715 0.9459
0.0015 20.0 150000 0.5818 0.945

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Realgon/N_bert_agnews_padding100model

Finetuned
(2424)
this model

Dataset used to train Realgon/N_bert_agnews_padding100model

Evaluation results