Realgon's picture
End of training
24bc24c
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - ag_news
metrics:
  - accuracy
model-index:
  - name: N_bert_agnews_padding50model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: ag_news
          type: ag_news
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9467105263157894

N_bert_agnews_padding50model

This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5754
  • Accuracy: 0.9467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1754 1.0 7500 0.1909 0.9428
0.1362 2.0 15000 0.1928 0.9461
0.1139 3.0 22500 0.2106 0.9461
0.0825 4.0 30000 0.2544 0.9466
0.0565 5.0 37500 0.3046 0.9367
0.0372 6.0 45000 0.3764 0.9436
0.0347 7.0 52500 0.3646 0.9425
0.0346 8.0 60000 0.3826 0.9461
0.0247 9.0 67500 0.4244 0.9455
0.0113 10.0 75000 0.4418 0.9446
0.0166 11.0 82500 0.4917 0.9462
0.0157 12.0 90000 0.4662 0.9442
0.0124 13.0 97500 0.4864 0.9438
0.0055 14.0 105000 0.4912 0.9457
0.0102 15.0 112500 0.5040 0.9446
0.0045 16.0 120000 0.5200 0.9441
0.0038 17.0 127500 0.5374 0.9467
0.0012 18.0 135000 0.5605 0.9459
0.0005 19.0 142500 0.5809 0.9455
0.0003 20.0 150000 0.5754 0.9467

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3