N_bert_agnews_padding60model

This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5465
  • Accuracy: 0.9478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1768 1.0 7500 0.1912 0.9447
0.1428 2.0 15000 0.2136 0.9397
0.1172 3.0 22500 0.2275 0.9418
0.08 4.0 30000 0.2665 0.9446
0.0564 5.0 37500 0.3084 0.9462
0.0368 6.0 45000 0.3503 0.9442
0.0381 7.0 52500 0.3898 0.9418
0.0279 8.0 60000 0.4233 0.9418
0.0177 9.0 67500 0.4515 0.9436
0.012 10.0 75000 0.4573 0.9451
0.0186 11.0 82500 0.4427 0.9455
0.0124 12.0 90000 0.4840 0.9424
0.0074 13.0 97500 0.4665 0.9459
0.0077 14.0 105000 0.5069 0.9461
0.0031 15.0 112500 0.5102 0.9443
0.0028 16.0 120000 0.5251 0.9466
0.0021 17.0 127500 0.5325 0.9464
0.0024 18.0 135000 0.5260 0.9483
0.0004 19.0 142500 0.5443 0.9472
0.0011 20.0 150000 0.5465 0.9478

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Realgon/N_bert_agnews_padding60model

Finetuned
(2373)
this model

Dataset used to train Realgon/N_bert_agnews_padding60model

Evaluation results