N_bert_agnews_padding70model

This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5807
  • Accuracy: 0.9464

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1804 1.0 7500 0.1897 0.9418
0.1359 2.0 15000 0.1998 0.9454
0.1189 3.0 22500 0.2309 0.9443
0.0882 4.0 30000 0.2622 0.9458
0.0579 5.0 37500 0.3019 0.9417
0.0389 6.0 45000 0.3608 0.9438
0.0359 7.0 52500 0.3635 0.9426
0.0296 8.0 60000 0.4064 0.9428
0.015 9.0 67500 0.4595 0.9417
0.0191 10.0 75000 0.4516 0.9433
0.0146 11.0 82500 0.5207 0.9409
0.0138 12.0 90000 0.4787 0.9442
0.0108 13.0 97500 0.5216 0.9408
0.0071 14.0 105000 0.5377 0.9455
0.0047 15.0 112500 0.5283 0.9459
0.0035 16.0 120000 0.4928 0.9451
0.0007 17.0 127500 0.5760 0.9454
0.0004 18.0 135000 0.5759 0.9449
0.0002 19.0 142500 0.5637 0.9472
0.0003 20.0 150000 0.5807 0.9464

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Realgon/N_bert_agnews_padding70model

Finetuned
(2424)
this model

Dataset used to train Realgon/N_bert_agnews_padding70model

Evaluation results