N_bert_agnews_padding80model

This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5733
  • Accuracy: 0.9466

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1814 1.0 7500 0.1946 0.9393
0.1378 2.0 15000 0.1999 0.9443
0.1185 3.0 22500 0.2327 0.9470
0.0766 4.0 30000 0.2848 0.9446
0.057 5.0 37500 0.3384 0.9409
0.0439 6.0 45000 0.3604 0.9425
0.0384 7.0 52500 0.3707 0.9436
0.0312 8.0 60000 0.3830 0.9432
0.0156 9.0 67500 0.4272 0.9443
0.0156 10.0 75000 0.4233 0.9464
0.0092 11.0 82500 0.4810 0.9457
0.0102 12.0 90000 0.5085 0.9447
0.0065 13.0 97500 0.4786 0.9455
0.009 14.0 105000 0.5062 0.9451
0.0049 15.0 112500 0.5219 0.9443
0.0043 16.0 120000 0.5577 0.9447
0.0032 17.0 127500 0.5405 0.9459
0.001 18.0 135000 0.5904 0.9457
0.0003 19.0 142500 0.5733 0.9454
0.0004 20.0 150000 0.5733 0.9466

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Realgon/N_bert_agnews_padding80model

Finetuned
(2424)
this model

Dataset used to train Realgon/N_bert_agnews_padding80model

Evaluation results