t-lite_part1-2_lr1e4_wsd_bs128
This model is a fine-tuned version of t-tech/T-lite-it-1.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3980
- Accuracy: 0.6669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- seed: 42
- distributed_type: multi-GPU
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: warmup_stable_decay
- lr_scheduler_warmup_steps: 100
- num_epochs: 0.5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.0001 | 1 | 1.4751 | 0.6606 |
1.5071 | 0.0354 | 500 | 1.4113 | 0.6647 |
1.5003 | 0.0709 | 1000 | 1.4080 | 0.6649 |
1.4959 | 0.1063 | 1500 | 1.4063 | 0.6654 |
1.5019 | 0.1418 | 2000 | 1.4054 | 0.6655 |
1.4891 | 0.1772 | 2500 | 1.4047 | 0.6656 |
1.4916 | 0.2126 | 3000 | 1.4040 | 0.6657 |
1.496 | 0.2481 | 3500 | 1.4034 | 0.6657 |
1.495 | 0.2835 | 4000 | 1.4032 | 0.6657 |
1.4934 | 0.3189 | 4500 | 1.4030 | 0.6658 |
1.4849 | 0.3544 | 5000 | 1.4029 | 0.6660 |
1.4833 | 0.3898 | 5500 | 1.4024 | 0.6661 |
1.4909 | 0.4253 | 6000 | 1.4023 | 0.6661 |
1.4923 | 0.4607 | 6500 | 1.4000 | 0.6665 |
1.4965 | 0.4961 | 7000 | 1.3979 | 0.6669 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
- Datasets 2.18.0
- Tokenizers 0.20.3
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for RefalMachine/T-lite-it-1.0-pseudo-base
Base model
t-tech/T-lite-it-1.0