|
--- |
|
language: |
|
- uk |
|
license: apache-2.0 |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
model-index: |
|
- name: ukrainian-data2vec-asr |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: uk |
|
split: test |
|
args: uk |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 17.042283338786351 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: uk |
|
split: validation |
|
args: uk |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 17.634350000973198 |
|
--- |
|
|
|
# Respeecher/ukrainian-data2vec-asr |
|
|
|
This model is a fine-tuned version of [Respeecher/ukrainian-data2vec](https://huggingface.co/Respeecher/ukrainian-data2vec) on the [Common Voice 11.0 dataset Ukrainian Train part](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/uk/train). |
|
It achieves the following results: |
|
- eval_wer: 17.634350000973198 |
|
- test_wer: 17.042283338786351 |
|
|
|
## How to Get Started with the Model |
|
|
|
```python |
|
from transformers import AutoProcessor, Data2VecAudioForCTC |
|
import torch |
|
from datasets import load_dataset, Audio |
|
|
|
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "uk", split="test") |
|
# Resample |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) |
|
|
|
processor = AutoProcessor.from_pretrained("Respeecher/ukrainian-data2vec-asr") |
|
model = Data2VecAudioForCTC.from_pretrained("Respeecher/ukrainian-data2vec-asr") |
|
model.eval() |
|
|
|
sampling_rate = dataset.features["audio"].sampling_rate |
|
inputs = processor(dataset[1]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") |
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
transcription = processor.batch_decode(predicted_ids) |
|
transcription[0] |
|
``` |
|
|
|
## Training Details |
|
|
|
Training code and instructions are available on [our github](https://github.com/respeecher/ukrainian_asr) |
|
|
|
|
|
|
|
|
|
|