Quantization made by Richard Erkhov.
StarDust_20B_v0.2 - GGUF
- Model creator: https://huggingface.co/Evillain/
- Original model: https://huggingface.co/Evillain/StarDust_20B_v0.2/
Name | Quant method | Size |
---|---|---|
StarDust_20B_v0.2.Q2_K.gguf | Q2_K | 6.91GB |
StarDust_20B_v0.2.IQ3_XS.gguf | IQ3_XS | 7.63GB |
StarDust_20B_v0.2.IQ3_S.gguf | IQ3_S | 8.06GB |
StarDust_20B_v0.2.Q3_K_S.gguf | Q3_K_S | 8.06GB |
StarDust_20B_v0.2.IQ3_M.gguf | IQ3_M | 8.53GB |
StarDust_20B_v0.2.Q3_K.gguf | Q3_K | 9.04GB |
StarDust_20B_v0.2.Q3_K_M.gguf | Q3_K_M | 9.04GB |
StarDust_20B_v0.2.Q3_K_L.gguf | Q3_K_L | 9.9GB |
StarDust_20B_v0.2.IQ4_XS.gguf | IQ4_XS | 10.01GB |
StarDust_20B_v0.2.Q4_0.gguf | Q4_0 | 10.52GB |
StarDust_20B_v0.2.IQ4_NL.gguf | IQ4_NL | 10.57GB |
StarDust_20B_v0.2.Q4_K_S.gguf | Q4_K_S | 7.56GB |
StarDust_20B_v0.2.Q4_K.gguf | Q4_K | 5.57GB |
StarDust_20B_v0.2.Q4_K_M.gguf | Q4_K_M | 4.12GB |
StarDust_20B_v0.2.Q4_1.gguf | Q4_1 | 3.66GB |
StarDust_20B_v0.2.Q5_0.gguf | Q5_0 | 2.97GB |
StarDust_20B_v0.2.Q5_K_S.gguf | Q5_K_S | 2.04GB |
StarDust_20B_v0.2.Q5_K.gguf | Q5_K | 1.65GB |
StarDust_20B_v0.2.Q5_K_M.gguf | Q5_K_M | 1.39GB |
StarDust_20B_v0.2.Q5_1.gguf | Q5_1 | 1.31GB |
StarDust_20B_v0.2.Q6_K.gguf | Q6_K | 1.05GB |
StarDust_20B_v0.2.Q8_0.gguf | Q8_0 | 0.99GB |
Original model description:
license: other library_name: transformers tags: - mergekit - merge - not-for-all-audiences base_model: - Kooten/DaringMaid-20B - TeeZee/DarkForest-20B-v2.0 - athirdpath/Iambe-RP-v3-20b license_name: microsoft-research-license model-index: - name: StarDust_20B_v0.2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.01 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.76 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 59.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 51.43 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 24.03 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Evillain/StarDust_20B_v0.2 name: Open LLM Leaderboard
Model Info
GGUF Version: StarDust_20B_v0.2-GGUF
Exllamav2 4.55bpw: Evillain/StarDust_20B_v0.2_exl2_4.55bpw
Experimental merge of 3 capable models. Main purpose was to keep the DarkForest adventuring quality while make it more consistent with prompt and context following, and also increase RP and dialogues variety.
This model is suitable for adventuring, should be fine also for storytelling, RP and ERP, but I don't have much of a time and imagination for testing.
I haven't tested this model much, actually, so it's all about an exploration of it's capabilities.
Prompt
Should work well with Alpaca format(but I'm not sure, since I don't really know what I'm doing :D)
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Input:
{input}
### Response:
DaringMaid was tested with Undi/Ikaris SillyTavern presets for Noromaid: Context template, Instruct template, so maybe it have a sense to try my model with those templates too.
Merged
This is a merge of pre-trained language models created using mergekit.
Merge Details
My second ever merge, created in order to understand how everything works.
Firstly I merged athirdpath/Iambe-RP-v3-20b and Kooten/DaringMaid-20B, named it Dust and repeated the operation with TeeZee/DarkForest-20B-v2.0 as a base and Dust as second model.
Merge Method
This model was merged using the SLERP merge method.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- model: TeeZee/DarkForest-20B-v2.0
layer_range: [0, 62]
- model: Dust
layer_range: [0, 62]
merge_method: slerp
base_model: TeeZee/DarkForest-20B-v2.0
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
name: StarDust_20B_v0.2
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 59.46 |
AI2 Reasoning Challenge (25-Shot) | 61.01 |
HellaSwag (10-Shot) | 83.76 |
MMLU (5-Shot) | 59.29 |
TruthfulQA (0-shot) | 51.43 |
Winogrande (5-shot) | 77.27 |
GSM8k (5-shot) | 24.03 |
- Downloads last month
- 25