Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

FILM-7B - GGUF

Name Quant method Size
FILM-7B.Q2_K.gguf Q2_K 2.53GB
FILM-7B.IQ3_XS.gguf IQ3_XS 2.81GB
FILM-7B.IQ3_S.gguf IQ3_S 2.96GB
FILM-7B.Q3_K_S.gguf Q3_K_S 2.95GB
FILM-7B.IQ3_M.gguf IQ3_M 3.06GB
FILM-7B.Q3_K.gguf Q3_K 3.28GB
FILM-7B.Q3_K_M.gguf Q3_K_M 3.28GB
FILM-7B.Q3_K_L.gguf Q3_K_L 3.56GB
FILM-7B.IQ4_XS.gguf IQ4_XS 3.67GB
FILM-7B.Q4_0.gguf Q4_0 3.83GB
FILM-7B.IQ4_NL.gguf IQ4_NL 3.87GB
FILM-7B.Q4_K_S.gguf Q4_K_S 3.86GB
FILM-7B.Q4_K.gguf Q4_K 4.07GB
FILM-7B.Q4_K_M.gguf Q4_K_M 4.07GB
FILM-7B.Q4_1.gguf Q4_1 4.24GB
FILM-7B.Q5_0.gguf Q5_0 4.65GB
FILM-7B.Q5_K_S.gguf Q5_K_S 4.65GB
FILM-7B.Q5_K.gguf Q5_K 4.78GB
FILM-7B.Q5_K_M.gguf Q5_K_M 4.78GB
FILM-7B.Q5_1.gguf Q5_1 5.07GB
FILM-7B.Q6_K.gguf Q6_K 5.53GB
FILM-7B.Q8_0.gguf Q8_0 7.17GB

Original model description:

license: apache-2.0 language: - en

FILM-7B

πŸ’» [Github Repo] β€’ πŸ“ƒ [Paper] β€’ βš“ [VaLProbing-32K]

FILM-7B is a 32K-context LLM that overcomes the lost-in-the-middle problem. It is trained from Mistral-7B-Instruct-v0.2 by applying Information-Intensie (In2) Training. FILM-7B achieves near-perfect performance on probing tasks, SOTA-level performance on real-world long-context tasks among ~7B size LLMs, and does not compromise the short-context performance.

Model Usage

The system tempelate for FILM-7B:

'''[INST] Below is a context and an instruction. Based on the information provided in the context, write a response for the instruction.

### Context:
{YOUR LONG CONTEXT}

### Instruction:
{YOUR QUESTION & INSTRUCTION} [/INST]
'''

Probing Results

To reproduce the results on our VaL Probing, see the guidance in https://github.com/microsoft/FILM/tree/main/VaLProbing.


Real-World Long-Context Tasks

To reproduce the results on real-world long-context tasks, see the guidance in https://github.com/microsoft/FILM/tree/main/real_world_long.


Short-Context Tasks

To reproduce the results on short-context tasks, see the guidance in https://github.com/microsoft/FILM/tree/main/short_tasks.


πŸ“ Citation

@misc{an2024make,
      title={Make Your LLM Fully Utilize the Context}, 
      author={Shengnan An and Zexiong Ma and Zeqi Lin and Nanning Zheng and Jian-Guang Lou},
      year={2024},
      eprint={2404.16811},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Disclaimer: This model is strictly for research purposes, and not an official product or service from Microsoft.

Downloads last month
155
GGUF
Model size
7.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .