RichardErkhov's picture
uploaded readme
44dd776 verified
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
deepseek-coder-1.3B-kexer - GGUF
- Model creator: https://huggingface.co/JetBrains/
- Original model: https://huggingface.co/JetBrains/deepseek-coder-1.3B-kexer/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [deepseek-coder-1.3B-kexer.Q2_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q2_K.gguf) | Q2_K | 0.52GB |
| [deepseek-coder-1.3B-kexer.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ3_XS.gguf) | IQ3_XS | 0.57GB |
| [deepseek-coder-1.3B-kexer.IQ3_S.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ3_S.gguf) | IQ3_S | 0.6GB |
| [deepseek-coder-1.3B-kexer.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q3_K_S.gguf) | Q3_K_S | 0.6GB |
| [deepseek-coder-1.3B-kexer.IQ3_M.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ3_M.gguf) | IQ3_M | 0.63GB |
| [deepseek-coder-1.3B-kexer.Q3_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q3_K.gguf) | Q3_K | 0.66GB |
| [deepseek-coder-1.3B-kexer.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q3_K_M.gguf) | Q3_K_M | 0.66GB |
| [deepseek-coder-1.3B-kexer.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q3_K_L.gguf) | Q3_K_L | 0.69GB |
| [deepseek-coder-1.3B-kexer.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ4_XS.gguf) | IQ4_XS | 0.7GB |
| [deepseek-coder-1.3B-kexer.Q4_0.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_0.gguf) | Q4_0 | 0.72GB |
| [deepseek-coder-1.3B-kexer.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ4_NL.gguf) | IQ4_NL | 0.73GB |
| [deepseek-coder-1.3B-kexer.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_K_S.gguf) | Q4_K_S | 0.76GB |
| [deepseek-coder-1.3B-kexer.Q4_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_K.gguf) | Q4_K | 0.81GB |
| [deepseek-coder-1.3B-kexer.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_K_M.gguf) | Q4_K_M | 0.81GB |
| [deepseek-coder-1.3B-kexer.Q4_1.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_1.gguf) | Q4_1 | 0.8GB |
| [deepseek-coder-1.3B-kexer.Q5_0.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_0.gguf) | Q5_0 | 0.87GB |
| [deepseek-coder-1.3B-kexer.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_K_S.gguf) | Q5_K_S | 0.89GB |
| [deepseek-coder-1.3B-kexer.Q5_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_K.gguf) | Q5_K | 0.93GB |
| [deepseek-coder-1.3B-kexer.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_K_M.gguf) | Q5_K_M | 0.93GB |
| [deepseek-coder-1.3B-kexer.Q5_1.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_1.gguf) | Q5_1 | 0.95GB |
| [deepseek-coder-1.3B-kexer.Q6_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q6_K.gguf) | Q6_K | 1.09GB |
| [deepseek-coder-1.3B-kexer.Q8_0.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q8_0.gguf) | Q8_0 | 1.33GB |
Original model description:
---
license: apache-2.0
datasets:
- JetBrains/KExercises
base_model: deepseek-ai/deepseek-coder-1.3b-base
results:
- task:
type: text-generation
dataset:
name: MultiPL-HumanEval (Kotlin)
type: openai_humaneval
metrics:
- name: pass@1
type: pass@1
value: 36.65
tags:
- code
---
# Kexer models
Kexer models are a collection of open-source generative text models fine-tuned on the [Kotlin Exercices](https://huggingface.co/datasets/JetBrains/KExercises) dataset.
This is a repository for the fine-tuned **Deepseek-coder-1.3b** model in the *Hugging Face Transformers* format.
# How to use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load pre-trained model and tokenizer
model_name = 'JetBrains/deepseek-coder-1.3B-kexer'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda')
# Create and encode input
input_text = """\
This function takes an integer n and returns factorial of a number:
fun factorial(n: Int): Int {\
"""
input_ids = tokenizer.encode(
input_text, return_tensors='pt'
).to('cuda')
# Generate
output = model.generate(
input_ids, max_length=60, num_return_sequences=1,
early_stopping=True, pad_token_id=tokenizer.eos_token_id,
)
# Decode output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```
As with the base model, we can use FIM. To do this, the following format must be used:
```
'<|fim▁begin|>' + prefix + '<|fim▁hole|>' + suffix + '<|fim▁end|>'
```
# Training setup
The model was trained on one A100 GPU with following hyperparameters:
| **Hyperparameter** | **Value** |
|:---------------------------:|:----------------------------------------:|
| `warmup` | 10% |
| `max_lr` | 1e-4 |
| `scheduler` | linear |
| `total_batch_size` | 256 (~130K tokens per step) |
| `num_epochs` | 4 |
More details about fine-tuning can be found in the technical report (coming soon!).
# Fine-tuning data
For tuning this model, we used 15K exmaples from the synthetically generated [Kotlin Exercices](https://huggingface.co/datasets/JetBrains/KExercises) dataset. Every example follows the HumanEval format. In total, the dataset contains about 3.5M tokens.
# Evaluation
For evaluation, we used the [Kotlin HumanEval](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval) dataset, which contains all 161 tasks from HumanEval translated into Kotlin by human experts. You can find more details about the pre-processing necessary to obtain our results, including the code for running, on the [datasets's page](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval).
Here are the results of our evaluation:
| **Model name** | **Kotlin HumanEval Pass Rate** |
|:---------------------------:|:----------------------------------------:|
| `Deepseek-coder-1.3B` | 26.71 |
| `Deepseek-coder-1.3B-Kexer` | **36.65** |
# Ethical considerations and limitations
Deepseek-coder-1.3B-Kexer is a new technology that carries risks with use. The testing conducted to date has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Deepseek-coder-1.3B-Kexer's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. The model was fine-tuned on a specific data format (Kotlin tasks), and deviation from this format can also lead to inaccurate or undesirable responses to user queries. Therefore, before deploying any applications of Deepseek-coder-1.3B-Kexer, developers should perform safety testing and tuning tailored to their specific applications of the model.