|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
deepseek-coder-1.3B-kexer - GGUF |
|
- Model creator: https://huggingface.co/JetBrains/ |
|
- Original model: https://huggingface.co/JetBrains/deepseek-coder-1.3B-kexer/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [deepseek-coder-1.3B-kexer.Q2_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q2_K.gguf) | Q2_K | 0.52GB | |
|
| [deepseek-coder-1.3B-kexer.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ3_XS.gguf) | IQ3_XS | 0.57GB | |
|
| [deepseek-coder-1.3B-kexer.IQ3_S.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ3_S.gguf) | IQ3_S | 0.6GB | |
|
| [deepseek-coder-1.3B-kexer.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q3_K_S.gguf) | Q3_K_S | 0.6GB | |
|
| [deepseek-coder-1.3B-kexer.IQ3_M.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ3_M.gguf) | IQ3_M | 0.63GB | |
|
| [deepseek-coder-1.3B-kexer.Q3_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q3_K.gguf) | Q3_K | 0.66GB | |
|
| [deepseek-coder-1.3B-kexer.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q3_K_M.gguf) | Q3_K_M | 0.66GB | |
|
| [deepseek-coder-1.3B-kexer.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q3_K_L.gguf) | Q3_K_L | 0.69GB | |
|
| [deepseek-coder-1.3B-kexer.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ4_XS.gguf) | IQ4_XS | 0.7GB | |
|
| [deepseek-coder-1.3B-kexer.Q4_0.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_0.gguf) | Q4_0 | 0.72GB | |
|
| [deepseek-coder-1.3B-kexer.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.IQ4_NL.gguf) | IQ4_NL | 0.73GB | |
|
| [deepseek-coder-1.3B-kexer.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_K_S.gguf) | Q4_K_S | 0.76GB | |
|
| [deepseek-coder-1.3B-kexer.Q4_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_K.gguf) | Q4_K | 0.81GB | |
|
| [deepseek-coder-1.3B-kexer.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_K_M.gguf) | Q4_K_M | 0.81GB | |
|
| [deepseek-coder-1.3B-kexer.Q4_1.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q4_1.gguf) | Q4_1 | 0.8GB | |
|
| [deepseek-coder-1.3B-kexer.Q5_0.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_0.gguf) | Q5_0 | 0.87GB | |
|
| [deepseek-coder-1.3B-kexer.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_K_S.gguf) | Q5_K_S | 0.89GB | |
|
| [deepseek-coder-1.3B-kexer.Q5_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_K.gguf) | Q5_K | 0.93GB | |
|
| [deepseek-coder-1.3B-kexer.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_K_M.gguf) | Q5_K_M | 0.93GB | |
|
| [deepseek-coder-1.3B-kexer.Q5_1.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q5_1.gguf) | Q5_1 | 0.95GB | |
|
| [deepseek-coder-1.3B-kexer.Q6_K.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q6_K.gguf) | Q6_K | 1.09GB | |
|
| [deepseek-coder-1.3B-kexer.Q8_0.gguf](https://huggingface.co/RichardErkhov/JetBrains_-_deepseek-coder-1.3B-kexer-gguf/blob/main/deepseek-coder-1.3B-kexer.Q8_0.gguf) | Q8_0 | 1.33GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- JetBrains/KExercises |
|
base_model: deepseek-ai/deepseek-coder-1.3b-base |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: MultiPL-HumanEval (Kotlin) |
|
type: openai_humaneval |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 36.65 |
|
tags: |
|
- code |
|
--- |
|
|
|
# Kexer models |
|
|
|
Kexer models are a collection of open-source generative text models fine-tuned on the [Kotlin Exercices](https://huggingface.co/datasets/JetBrains/KExercises) dataset. |
|
This is a repository for the fine-tuned **Deepseek-coder-1.3b** model in the *Hugging Face Transformers* format. |
|
|
|
# How to use |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load pre-trained model and tokenizer |
|
model_name = 'JetBrains/deepseek-coder-1.3B-kexer' |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda') |
|
|
|
# Create and encode input |
|
input_text = """\ |
|
This function takes an integer n and returns factorial of a number: |
|
fun factorial(n: Int): Int {\ |
|
""" |
|
input_ids = tokenizer.encode( |
|
input_text, return_tensors='pt' |
|
).to('cuda') |
|
|
|
# Generate |
|
output = model.generate( |
|
input_ids, max_length=60, num_return_sequences=1, |
|
early_stopping=True, pad_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
# Decode output |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(generated_text) |
|
``` |
|
|
|
As with the base model, we can use FIM. To do this, the following format must be used: |
|
``` |
|
'<|fim▁begin|>' + prefix + '<|fim▁hole|>' + suffix + '<|fim▁end|>' |
|
``` |
|
|
|
# Training setup |
|
|
|
The model was trained on one A100 GPU with following hyperparameters: |
|
|
|
| **Hyperparameter** | **Value** | |
|
|:---------------------------:|:----------------------------------------:| |
|
| `warmup` | 10% | |
|
| `max_lr` | 1e-4 | |
|
| `scheduler` | linear | |
|
| `total_batch_size` | 256 (~130K tokens per step) | |
|
| `num_epochs` | 4 | |
|
|
|
More details about fine-tuning can be found in the technical report (coming soon!). |
|
|
|
# Fine-tuning data |
|
|
|
For tuning this model, we used 15K exmaples from the synthetically generated [Kotlin Exercices](https://huggingface.co/datasets/JetBrains/KExercises) dataset. Every example follows the HumanEval format. In total, the dataset contains about 3.5M tokens. |
|
|
|
# Evaluation |
|
|
|
For evaluation, we used the [Kotlin HumanEval](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval) dataset, which contains all 161 tasks from HumanEval translated into Kotlin by human experts. You can find more details about the pre-processing necessary to obtain our results, including the code for running, on the [datasets's page](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval). |
|
|
|
Here are the results of our evaluation: |
|
|
|
| **Model name** | **Kotlin HumanEval Pass Rate** | |
|
|:---------------------------:|:----------------------------------------:| |
|
| `Deepseek-coder-1.3B` | 26.71 | |
|
| `Deepseek-coder-1.3B-Kexer` | **36.65** | |
|
|
|
# Ethical considerations and limitations |
|
|
|
Deepseek-coder-1.3B-Kexer is a new technology that carries risks with use. The testing conducted to date has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Deepseek-coder-1.3B-Kexer's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. The model was fine-tuned on a specific data format (Kotlin tasks), and deviation from this format can also lead to inaccurate or undesirable responses to user queries. Therefore, before deploying any applications of Deepseek-coder-1.3B-Kexer, developers should perform safety testing and tuning tailored to their specific applications of the model. |
|
|
|
|