Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

MultiPL-T-StarCoderBase_1b - bnb 4bits

Original model description:

license: bigscience-openrail-m library_name: transformers tags: - code - gpt_bigcode datasets: - nuprl/MultiPL-T metrics: - code_eval model-index: - name: MultiPLCoder-1b-OCaml results: - task: type: text-generation dataset: name: MultiPL-HumanEval (Lua) type: nuprl/MultiPL-E metrics: - type: pass@1 value: 0.173 name: pass@1 verified: true - type: pass@1 value: 0.113 name: pass@1 verified: true - type: pass@1 value: 0.097 name: pass@1 verified: true

MultiPLCoder-1b

1 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the MultiPL-T dataset. These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml.

Language Revision Index

This is the revision index for the best-performing models for their respective langauge.

Langauge Revision ID Epoch
Lua 7e96d931547e342ad0661cdd91236fe4ccf52545 3
Racket 2cdc541bee1db4da80c0b43384b0d6a0cacca5b2 5
OCaml e8a24f9e2149cbda8c3cca264a53c2b361b7a031 6

Usage

To utilize one of the models in this repository, you must first select a commit revision for that model from the table above. For example, to use the Lua model:

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-1b")
lua_revision="7e96d931547e342ad0661cdd91236fe4ccf52545"
model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-1b", revision=lua_revision)

Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation.

toks = tokenizer.encode("-- Hello World", return_tensors="pt")
out = model.generate(toks, use_cache=True,  do_sample=True, temperature=0.2, top_p=0.95, max_length=50)
print(tokenizer.decode(out[0], skip_special_tokens=True))
-- Hello World!
-- :param name: The name of the person to say hello to
-- :return: A greeting
local function say_hello(name)
  return "Hello ".. name
end
Downloads last month
5
Safetensors
Model size
644M params
Tensor type
F32
FP16
U8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.