See axolotl config
axolotl version: 0.4.1
base_model: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: formatted_math_ratio_02_emojianswers_10k.jsonl
ds_type: json
type: alpaca
val_set_size: 0.05
dataset_prepared_path:
output_dir: ./outputs/ppml-formatted
hf_use_auth_token: True
hub_model_id: Ritual-Net/answer-emojis
hub_strategy: all_checkpoints
eval_sample_packing: False
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: ppml
wandb_entity: ritualnah
wandb_watch:
wandb_name: emojianswers
wandb_log_model: "checkpoint"
lora_modules_to_save:
- embed_tokens
- lm_head
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_every_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
tokens: # these are delimiters
- "[INST]"
- "[/INST]"
answer-emojis
This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5239
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0155 | 0.0082 | 1 | 1.2302 |
0.5161 | 0.5031 | 61 | 0.5744 |
0.5398 | 1.0062 | 122 | 0.5379 |
0.4614 | 1.4990 | 183 | 0.5295 |
0.4323 | 2.0021 | 244 | 0.5178 |
0.3823 | 2.4948 | 305 | 0.5239 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for Ritual-Net/answer-emojis
Base model
NousResearch/Llama-2-7b-hf