whisper-base-id / README.md
Rizka's picture
Upload tokenizer
e9003f0 verified
metadata
base_model: openai/whisper-base
datasets:
  - mozilla-foundation/common_voice_11_0
language:
  - id
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-base-id
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: id
          split: test
          args: 'config: id, split: test'
        metrics:
          - type: wer
            value: 28.978092004279272
            name: Wer

whisper-base-id

This model is a fine-tuned version of openai/whisper-base on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4661
  • Wer: 28.9781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3685 1.9305 1000 0.3951 28.4153
0.1421 3.8610 2000 0.3944 28.3269
0.0494 5.7915 3000 0.4211 28.4153
0.0176 7.7220 4000 0.4514 30.2712
0.0105 9.6525 5000 0.4661 28.9781

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1