swinv2-tiny-patch4-window8-256-dmae-humeda-DAV20
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5291
- Accuracy: 0.6923
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.1476 | 1.0 | 22 | 1.5220 | 0.3462 |
3.0161 | 2.0 | 44 | 1.4201 | 0.4231 |
2.6066 | 3.0 | 66 | 1.2502 | 0.4615 |
1.9733 | 4.0 | 88 | 1.0608 | 0.5385 |
1.5227 | 5.0 | 110 | 0.9184 | 0.6538 |
1.1822 | 6.0 | 132 | 0.9237 | 0.6538 |
1.0809 | 7.0 | 154 | 0.9022 | 0.6346 |
0.8904 | 8.0 | 176 | 0.8389 | 0.7308 |
0.8172 | 9.0 | 198 | 0.8809 | 0.6731 |
0.6112 | 10.0 | 220 | 0.9043 | 0.7308 |
0.5935 | 11.0 | 242 | 1.2283 | 0.5769 |
0.4656 | 12.0 | 264 | 0.8913 | 0.7308 |
0.5363 | 13.0 | 286 | 0.8755 | 0.7308 |
0.4195 | 14.0 | 308 | 0.9897 | 0.6538 |
0.3861 | 15.0 | 330 | 0.9968 | 0.6923 |
0.3865 | 16.0 | 352 | 1.2396 | 0.6154 |
0.3542 | 17.0 | 374 | 1.0785 | 0.6538 |
0.3784 | 18.0 | 396 | 0.9859 | 0.7115 |
0.2699 | 19.0 | 418 | 1.1501 | 0.7115 |
0.2161 | 20.0 | 440 | 1.1033 | 0.6538 |
0.2629 | 21.0 | 462 | 1.1783 | 0.6923 |
0.2898 | 22.0 | 484 | 1.0924 | 0.7308 |
0.2589 | 23.0 | 506 | 1.1429 | 0.7115 |
0.2096 | 24.0 | 528 | 1.1767 | 0.6731 |
0.2235 | 25.0 | 550 | 1.3683 | 0.6346 |
0.1683 | 26.0 | 572 | 1.0724 | 0.75 |
0.2041 | 27.0 | 594 | 1.2481 | 0.75 |
0.2238 | 28.0 | 616 | 1.3583 | 0.6923 |
0.218 | 29.0 | 638 | 1.1183 | 0.7115 |
0.1971 | 30.0 | 660 | 1.1319 | 0.6923 |
0.1732 | 31.0 | 682 | 1.2364 | 0.6731 |
0.1551 | 32.0 | 704 | 1.2510 | 0.6731 |
0.1977 | 33.0 | 726 | 1.3023 | 0.6731 |
0.2059 | 34.0 | 748 | 1.3325 | 0.7115 |
0.1637 | 35.0 | 770 | 1.2952 | 0.7308 |
0.1517 | 36.0 | 792 | 1.3332 | 0.6923 |
0.1035 | 37.0 | 814 | 1.3744 | 0.7115 |
0.1696 | 38.0 | 836 | 1.4287 | 0.7308 |
0.1186 | 39.0 | 858 | 1.4970 | 0.6923 |
0.1338 | 40.0 | 880 | 1.4538 | 0.7115 |
0.1309 | 41.0 | 902 | 1.4894 | 0.6923 |
0.0998 | 42.0 | 924 | 1.4104 | 0.6923 |
0.1794 | 43.0 | 946 | 1.4863 | 0.7115 |
0.1529 | 44.0 | 968 | 1.5677 | 0.7115 |
0.1656 | 45.0 | 990 | 1.5333 | 0.6731 |
0.124 | 46.0 | 1012 | 1.5137 | 0.6923 |
0.1227 | 47.0 | 1034 | 1.5245 | 0.6923 |
0.115 | 47.7442 | 1050 | 1.5291 | 0.6923 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV20
Base model
microsoft/swinv2-tiny-patch4-window8-256