swinv2-tiny-patch4-window8-256-dmae-humeda-DAV22

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0386
  • Accuracy: 0.6346

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.1723 1.0 22 1.6164 0.1923
2.8734 2.0 44 1.4347 0.3846
2.1553 3.0 66 1.1520 0.4808
1.6674 4.0 88 1.0921 0.4808
1.1204 5.0 110 0.9091 0.5962
1.0373 6.0 132 0.8185 0.6923
0.9181 7.0 154 0.9377 0.6731
0.7475 8.0 176 0.8407 0.6731
0.6679 9.0 198 0.9488 0.6923
0.4914 10.0 220 0.8699 0.7115
0.4421 11.0 242 1.1132 0.6538
0.3759 12.0 264 0.9250 0.7115
0.4317 13.0 286 0.9220 0.6731
0.4137 14.0 308 1.0225 0.7115
0.3451 15.0 330 1.0872 0.6538
0.3482 16.0 352 1.0129 0.6731
0.3346 17.0 374 1.0314 0.6538
0.3105 18.0 396 1.0348 0.6538
0.252 19.0 418 1.0386 0.6346
0.317 19.0930 420 1.0386 0.6346

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV22

Finetuned
(98)
this model