swinv2-tiny-patch4-window8-256-dmae-humeda-DAV34
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3276
- Accuracy: 0.6333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8889 | 6 | 1.4254 | 0.45 |
5.9772 | 1.8889 | 12 | 1.3083 | 0.45 |
5.9772 | 2.8889 | 18 | 1.3032 | 0.4667 |
5.1141 | 3.8889 | 24 | 1.1521 | 0.5667 |
5.1141 | 4.8889 | 30 | 1.2171 | 0.4667 |
3.8959 | 5.8889 | 36 | 1.1281 | 0.4833 |
3.8959 | 6.8889 | 42 | 0.9969 | 0.6167 |
2.9663 | 7.8889 | 48 | 0.9814 | 0.65 |
2.9663 | 8.8889 | 54 | 0.8797 | 0.6333 |
2.416 | 9.8889 | 60 | 0.8956 | 0.6667 |
2.416 | 10.8889 | 66 | 0.8364 | 0.7 |
1.9336 | 11.8889 | 72 | 0.9800 | 0.65 |
1.9336 | 12.8889 | 78 | 0.8707 | 0.6833 |
1.5631 | 13.8889 | 84 | 0.9331 | 0.6333 |
1.5631 | 14.8889 | 90 | 1.0113 | 0.6333 |
1.1295 | 15.8889 | 96 | 1.0988 | 0.6167 |
1.1295 | 16.8889 | 102 | 1.0197 | 0.6833 |
1.1454 | 17.8889 | 108 | 1.2170 | 0.6167 |
1.1454 | 18.8889 | 114 | 1.1182 | 0.6667 |
0.8852 | 19.8889 | 120 | 1.1026 | 0.6833 |
0.8852 | 20.8889 | 126 | 1.0868 | 0.6333 |
0.7881 | 21.8889 | 132 | 1.1674 | 0.6333 |
0.7881 | 22.8889 | 138 | 1.1763 | 0.6667 |
0.7913 | 23.8889 | 144 | 1.3433 | 0.6333 |
0.7913 | 24.8889 | 150 | 1.1228 | 0.7 |
0.667 | 25.8889 | 156 | 1.2828 | 0.6667 |
0.667 | 26.8889 | 162 | 1.2373 | 0.6833 |
0.6299 | 27.8889 | 168 | 1.2951 | 0.6667 |
0.6299 | 28.8889 | 174 | 1.3410 | 0.6333 |
0.5409 | 29.8889 | 180 | 1.1852 | 0.7 |
0.5409 | 30.8889 | 186 | 1.4286 | 0.6167 |
0.6085 | 31.8889 | 192 | 1.2376 | 0.65 |
0.6085 | 32.8889 | 198 | 1.2249 | 0.6667 |
0.562 | 33.8889 | 204 | 1.3640 | 0.6333 |
0.562 | 34.8889 | 210 | 1.4234 | 0.6333 |
0.4543 | 35.8889 | 216 | 1.3489 | 0.6333 |
0.4543 | 36.8889 | 222 | 1.3273 | 0.6333 |
0.4708 | 37.8889 | 228 | 1.3215 | 0.6333 |
0.4708 | 38.8889 | 234 | 1.3277 | 0.6333 |
0.5217 | 39.8889 | 240 | 1.3276 | 0.6333 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV34
Base model
microsoft/swinv2-tiny-patch4-window8-256