output
This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the Rodrigo1771/drugtemist-en-fasttext-8-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0080
- Precision: 0.9272
- Recall: 0.9376
- F1: 0.9323
- Accuracy: 0.9987
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.9990 | 481 | 0.0042 | 0.9173 | 0.9413 | 0.9292 | 0.9987 |
0.0156 | 2.0 | 963 | 0.0049 | 0.9134 | 0.9245 | 0.9189 | 0.9986 |
0.0039 | 2.9990 | 1444 | 0.0053 | 0.8914 | 0.9487 | 0.9192 | 0.9986 |
0.0024 | 4.0 | 1926 | 0.0061 | 0.8820 | 0.9543 | 0.9167 | 0.9985 |
0.0017 | 4.9990 | 2407 | 0.0074 | 0.9199 | 0.9310 | 0.9254 | 0.9986 |
0.0011 | 6.0 | 2889 | 0.0079 | 0.9170 | 0.9366 | 0.9267 | 0.9986 |
0.0007 | 6.9990 | 3370 | 0.0067 | 0.9092 | 0.9422 | 0.9254 | 0.9987 |
0.0005 | 8.0 | 3852 | 0.0073 | 0.9249 | 0.9301 | 0.9275 | 0.9987 |
0.0004 | 8.9990 | 4333 | 0.0080 | 0.9272 | 0.9376 | 0.9323 | 0.9987 |
0.0002 | 9.9896 | 4810 | 0.0079 | 0.9247 | 0.9385 | 0.9315 | 0.9987 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 46
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Rodrigo1771/BioLinkBERT-base-drugtemist-en-fasttext-8-ner
Base model
michiyasunaga/BioLinkBERT-baseDataset used to train Rodrigo1771/BioLinkBERT-base-drugtemist-en-fasttext-8-ner
Evaluation results
- Precision on Rodrigo1771/drugtemist-en-fasttext-8-nervalidation set self-reported0.927
- Recall on Rodrigo1771/drugtemist-en-fasttext-8-nervalidation set self-reported0.938
- F1 on Rodrigo1771/drugtemist-en-fasttext-8-nervalidation set self-reported0.932
- Accuracy on Rodrigo1771/drugtemist-en-fasttext-8-nervalidation set self-reported0.999