output
This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the Rodrigo1771/drugtemist-en-8-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0057
- Precision: 0.9318
- Recall: 0.9301
- F1: 0.9310
- Accuracy: 0.9987
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 493 | 0.0050 | 0.9288 | 0.9245 | 0.9267 | 0.9987 |
0.018 | 2.0 | 986 | 0.0057 | 0.9104 | 0.9189 | 0.9147 | 0.9984 |
0.0044 | 3.0 | 1479 | 0.0079 | 0.9362 | 0.9161 | 0.9260 | 0.9985 |
0.0023 | 4.0 | 1972 | 0.0057 | 0.9318 | 0.9301 | 0.9310 | 0.9987 |
0.0014 | 5.0 | 2465 | 0.0070 | 0.9201 | 0.9226 | 0.9214 | 0.9986 |
0.0008 | 6.0 | 2958 | 0.0082 | 0.9118 | 0.9254 | 0.9186 | 0.9985 |
0.0006 | 7.0 | 3451 | 0.0074 | 0.9172 | 0.9394 | 0.9282 | 0.9986 |
0.0003 | 8.0 | 3944 | 0.0085 | 0.9219 | 0.9245 | 0.9232 | 0.9985 |
0.0003 | 9.0 | 4437 | 0.0086 | 0.9149 | 0.9320 | 0.9234 | 0.9985 |
0.0002 | 10.0 | 4930 | 0.0089 | 0.9172 | 0.9292 | 0.9231 | 0.9985 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 110
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Rodrigo1771/BioLinkBERT-base-drugtemist-en-word2vec-8-ner
Base model
michiyasunaga/BioLinkBERT-baseDataset used to train Rodrigo1771/BioLinkBERT-base-drugtemist-en-word2vec-8-ner
Evaluation results
- Precision on Rodrigo1771/drugtemist-en-8-nervalidation set self-reported0.932
- Recall on Rodrigo1771/drugtemist-en-8-nervalidation set self-reported0.930
- F1 on Rodrigo1771/drugtemist-en-8-nervalidation set self-reported0.931
- Accuracy on Rodrigo1771/drugtemist-en-8-nervalidation set self-reported0.999