Rodrigo1771 commited on
Commit
0b62167
·
verified ·
1 Parent(s): a711ee3

Training in progress, epoch 2

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: michiyasunaga/BioLinkBERT-base
5
+ tags:
6
+ - token-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - Rodrigo1771/drugtemist-en-75-ner
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ - accuracy
15
+ model-index:
16
+ - name: output
17
+ results:
18
+ - task:
19
+ name: Token Classification
20
+ type: token-classification
21
+ dataset:
22
+ name: Rodrigo1771/drugtemist-en-75-ner
23
+ type: Rodrigo1771/drugtemist-en-75-ner
24
+ config: DrugTEMIST English NER
25
+ split: validation
26
+ args: DrugTEMIST English NER
27
+ metrics:
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.9342105263157895
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.9263746505125815
34
+ - name: F1
35
+ type: f1
36
+ value: 0.930276087973795
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.9987162671280663
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # output
46
+
47
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-75-ner dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.0065
50
+ - Precision: 0.9342
51
+ - Recall: 0.9264
52
+ - F1: 0.9303
53
+ - Accuracy: 0.9987
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 5e-05
73
+ - train_batch_size: 32
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 2
77
+ - total_train_batch_size: 64
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 10.0
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | 0.0189 | 1.0 | 504 | 0.0052 | 0.8712 | 0.9394 | 0.9040 | 0.9984 |
87
+ | 0.0047 | 2.0 | 1008 | 0.0048 | 0.9253 | 0.9236 | 0.9244 | 0.9987 |
88
+ | 0.0027 | 3.0 | 1512 | 0.0059 | 0.9252 | 0.9226 | 0.9239 | 0.9986 |
89
+ | 0.0015 | 4.0 | 2016 | 0.0065 | 0.9342 | 0.9264 | 0.9303 | 0.9987 |
90
+ | 0.0011 | 5.0 | 2520 | 0.0073 | 0.9073 | 0.9394 | 0.9231 | 0.9986 |
91
+ | 0.0005 | 6.0 | 3024 | 0.0090 | 0.9191 | 0.9217 | 0.9204 | 0.9984 |
92
+ | 0.0007 | 7.0 | 3528 | 0.0084 | 0.9074 | 0.9310 | 0.9190 | 0.9986 |
93
+ | 0.0004 | 8.0 | 4032 | 0.0085 | 0.9093 | 0.9338 | 0.9214 | 0.9986 |
94
+ | 0.0003 | 9.0 | 4536 | 0.0080 | 0.9186 | 0.9357 | 0.9271 | 0.9987 |
95
+ | 0.0002 | 10.0 | 5040 | 0.0083 | 0.9210 | 0.9348 | 0.9278 | 0.9987 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.44.2
101
+ - Pytorch 2.4.0+cu121
102
+ - Datasets 2.21.0
103
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9987162671280663,
4
+ "eval_f1": 0.930276087973795,
5
+ "eval_loss": 0.0064844791777431965,
6
+ "eval_precision": 0.9342105263157895,
7
+ "eval_recall": 0.9263746505125815,
8
+ "eval_runtime": 13.1881,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 526.688,
11
+ "eval_steps_per_second": 65.893,
12
+ "predict_accuracy": 0.9986488402874071,
13
+ "predict_f1": 0.9212396929201025,
14
+ "predict_loss": 0.006953952368348837,
15
+ "predict_precision": 0.9025069637883009,
16
+ "predict_recall": 0.9407665505226481,
17
+ "predict_runtime": 26.178,
18
+ "predict_samples_per_second": 562.112,
19
+ "predict_steps_per_second": 70.288,
20
+ "total_flos": 1.394320679130096e+16,
21
+ "train_loss": 0.0030765269683407886,
22
+ "train_runtime": 1249.6681,
23
+ "train_samples": 32232,
24
+ "train_samples_per_second": 257.924,
25
+ "train_steps_per_second": 4.033
26
+ }
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "michiyasunaga/BioLinkBERT-base",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "finetuning_task": "ner",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "O",
15
+ "1": "B-FARMACO",
16
+ "2": "I-FARMACO"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "B-FARMACO": 1,
22
+ "I-FARMACO": 2,
23
+ "O": 0
24
+ },
25
+ "layer_norm_eps": 1e-12,
26
+ "max_position_embeddings": 512,
27
+ "model_type": "bert",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 12,
30
+ "pad_token_id": 0,
31
+ "position_embedding_type": "absolute",
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.44.2",
34
+ "type_vocab_size": 2,
35
+ "use_cache": true,
36
+ "vocab_size": 28895
37
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9987162671280663,
4
+ "eval_f1": 0.930276087973795,
5
+ "eval_loss": 0.0064844791777431965,
6
+ "eval_precision": 0.9342105263157895,
7
+ "eval_recall": 0.9263746505125815,
8
+ "eval_runtime": 13.1881,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 526.688,
11
+ "eval_steps_per_second": 65.893
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e5a6231e3ced2d3d7b97329b083c5ee2f8eafd5710218e50051907a6487efaf
3
+ size 430601004
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9986488402874071,
3
+ "predict_f1": 0.9212396929201025,
4
+ "predict_loss": 0.006953952368348837,
5
+ "predict_precision": 0.9025069637883009,
6
+ "predict_recall": 0.9407665505226481,
7
+ "predict_runtime": 26.178,
8
+ "predict_samples_per_second": 562.112,
9
+ "predict_steps_per_second": 70.288
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tb/events.out.tfevents.1725526555.6cb9bed92fd1.4510.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b997e02cb357ba36d50ba20ca9d874b3df1576e5d678167da71f72577e0f45e
3
+ size 12305
tb/events.out.tfevents.1725527837.6cb9bed92fd1.4510.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24dfba6e51d8a0727fb46592f105dea95aa3a1892fc3bb573fbee1166feae180
3
+ size 560
tb/events.out.tfevents.1725528054.6cb9bed92fd1.10874.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4c4f8b8917eb1fcedb1ff868953e32accc05597a54b44b92d041333f1c146f5
3
+ size 6276
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
train.log ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/4930 [00:00<?, ?it/s]
1
  0%| | 1/4930 [00:00<1:20:19, 1.02it/s]
2
  0%| | 2/4930 [00:01<48:52, 1.68it/s]
3
  0%| | 3/4930 [00:01<32:40, 2.51it/s]
4
  0%| | 4/4930 [00:01<28:21, 2.90it/s]
5
  0%| | 5/4930 [00:01<24:36, 3.34it/s]
6
  0%| | 6/4930 [00:02<25:17, 3.24it/s]
7
  0%| | 7/4930 [00:02<22:14, 3.69it/s]
8
  0%| | 8/4930 [00:02<19:16, 4.26it/s]
9
  0%| | 9/4930 [00:02<17:58, 4.56it/s]
10
  0%| | 10/4930 [00:03<17:58, 4.56it/s]
11
  0%| | 11/4930 [00:03<18:48, 4.36it/s]
12
  0%| | 12/4930 [00:03<18:34, 4.41it/s]
13
  0%| | 13/4930 [00:03<20:28, 4.00it/s]
14
  0%| | 14/4930 [00:04<19:31, 4.19it/s]
15
  0%| | 15/4930 [00:04<18:46, 4.36it/s]
16
  0%| | 16/4930 [00:04<17:36, 4.65it/s]
17
  0%| | 17/4930 [00:04<17:39, 4.64it/s]
18
  0%| | 18/4930 [00:04<17:07, 4.78it/s]
19
  0%| | 19/4930 [00:05<16:38, 4.92it/s]
20
  0%| | 20/4930 [00:05<16:00, 5.11it/s]
21
  0%| | 21/4930 [00:05<16:36, 4.92it/s]
22
  0%| | 22/4930 [00:05<19:56, 4.10it/s]
23
  0%| | 23/4930 [00:05<20:01, 4.08it/s]
24
  0%| | 24/4930 [00:06<20:36, 3.97it/s]
25
  1%| | 25/4930 [00:06<19:04, 4.29it/s]
26
  1%| | 26/4930 [00:06<18:17, 4.47it/s]
27
  1%| | 27/4930 [00:06<17:44, 4.60it/s]
28
  1%| | 28/4930 [00:07<16:34, 4.93it/s]
29
  1%| | 29/4930 [00:07<15:53, 5.14it/s]
30
  1%| | 30/4930 [00:07<15:45, 5.18it/s]
31
  1%| | 31/4930 [00:07<16:38, 4.90it/s]
32
  1%| | 32/4930 [00:07<17:23, 4.69it/s]
33
  1%| | 33/4930 [00:08<17:24, 4.69it/s]
34
  1%| | 34/4930 [00:08<15:59, 5.10it/s]
35
  1%| | 35/4930 [00:08<15:44, 5.18it/s]
36
  1%| | 36/4930 [00:08<15:17, 5.33it/s]
37
  1%| | 37/4930 [00:08<15:33, 5.24it/s]
38
  1%| | 38/4930 [00:08<16:04, 5.07it/s]
39
  1%| | 39/4930 [00:09<15:49, 5.15it/s]
40
  1%| | 40/4930 [00:09<15:11, 5.36it/s]
41
  1%| | 41/4930 [00:09<15:08, 5.38it/s]
42
  1%| | 42/4930 [00:09<15:05, 5.40it/s]
43
  1%| | 43/4930 [00:09<14:39, 5.55it/s]
44
  1%| | 44/4930 [00:10<14:02, 5.80it/s]
45
  1%| | 45/4930 [00:10<15:50, 5.14it/s]
46
  1%| | 46/4930 [00:10<17:29, 4.65it/s]
47
  1%| | 47/4930 [00:10<18:03, 4.51it/s]
48
  1%| | 48/4930 [00:11<19:12, 4.24it/s]
49
  1%| | 49/4930 [00:11<17:50, 4.56it/s]
50
  1%| | 50/4930 [00:11<17:45, 4.58it/s]
51
  1%| | 51/4930 [00:11<17:11, 4.73it/s]
52
  1%| | 52/4930 [00:11<16:51, 4.82it/s]
53
  1%| | 53/4930 [00:12<17:29, 4.65it/s]
54
  1%| | 54/4930 [00:12<16:46, 4.84it/s]
55
  1%| | 55/4930 [00:12<16:10, 5.02it/s]
56
  1%| | 56/4930 [00:12<15:39, 5.19it/s]
57
  1%| | 57/4930 [00:12<15:33, 5.22it/s]
58
  1%| | 58/4930 [00:13<16:09, 5.02it/s]
59
  1%| | 59/4930 [00:13<15:29, 5.24it/s]
60
  1%| | 60/4930 [00:13<16:22, 4.96it/s]
61
  1%| | 61/4930 [00:13<17:17, 4.69it/s]
62
  1%|▏ | 62/4930 [00:13<17:07, 4.74it/s]
63
  1%|▏ | 63/4930 [00:14<16:06, 5.03it/s]
64
  1%|▏ | 64/4930 [00:14<17:20, 4.68it/s]
65
  1%|▏ | 65/4930 [00:14<16:43, 4.85it/s]
66
  1%|▏ | 66/4930 [00:14<15:33, 5.21it/s]
67
  1%|▏ | 67/4930 [00:14<15:25, 5.25it/s]
68
  1%|▏ | 68/4930 [00:15<16:27, 4.92it/s]
69
  1%|▏ | 69/4930 [00:15<15:28, 5.24it/s]
70
  1%|▏ | 70/4930 [00:15<15:35, 5.20it/s]
71
  1%|▏ | 71/4930 [00:15<16:55, 4.78it/s]
72
  1%|▏ | 72/4930 [00:15<15:44, 5.15it/s]
73
  1%|▏ | 73/4930 [00:16<17:05, 4.74it/s]
74
  2%|▏ | 74/4930 [00:16<17:22, 4.66it/s]
75
  2%|▏ | 75/4930 [00:16<17:26, 4.64it/s]
76
  2%|▏ | 76/4930 [00:16<18:14, 4.43it/s]
77
  2%|▏ | 77/4930 [00:16<17:22, 4.66it/s]
78
  2%|▏ | 78/4930 [00:17<18:55, 4.27it/s]
79
  2%|▏ | 79/4930 [00:17<18:44, 4.31it/s]
80
  2%|▏ | 80/4930 [00:17<21:41, 3.73it/s]
81
  2%|▏ | 81/4930 [00:18<21:55, 3.69it/s]
82
  2%|▏ | 82/4930 [00:18<19:07, 4.23it/s]
83
  2%|▏ | 83/4930 [00:18<17:23, 4.64it/s]
84
  2%|▏ | 84/4930 [00:18<16:33, 4.88it/s]
85
  2%|▏ | 85/4930 [00:18<17:08, 4.71it/s]
86
  2%|▏ | 86/4930 [00:19<16:43, 4.83it/s]
87
  2%|▏ | 87/4930 [00:19<15:31, 5.20it/s]
88
  2%|▏ | 88/4930 [00:19<16:57, 4.76it/s]
89
  2%|▏ | 89/4930 [00:19<18:59, 4.25it/s]
90
  2%|▏ | 90/4930 [00:19<19:15, 4.19it/s]
91
  2%|▏ | 91/4930 [00:20<19:09, 4.21it/s]
92
  2%|▏ | 92/4930 [00:20<20:09, 4.00it/s]
93
  2%|▏ | 93/4930 [00:20<21:55, 3.68it/s]
94
  2%|▏ | 94/4930 [00:21<24:03, 3.35it/s]
95
  2%|▏ | 95/4930 [00:21<22:33, 3.57it/s]
96
  2%|▏ | 96/4930 [00:21<20:23, 3.95it/s]
97
  2%|▏ | 97/4930 [00:21<20:50, 3.87it/s]
98
  2%|▏ | 98/4930 [00:22<25:34, 3.15it/s]
99
  2%|▏ | 99/4930 [00:22<24:36, 3.27it/s]
100
  2%|▏ | 100/4930 [00:22<21:37, 3.72it/s]
101
  2%|▏ | 101/4930 [00:22<20:09, 3.99it/s]
102
  2%|▏ | 102/4930 [00:23<19:00, 4.23it/s]
103
  2%|▏ | 103/4930 [00:23<18:20, 4.38it/s]
104
  2%|▏ | 104/4930 [00:23<20:18, 3.96it/s]
105
  2%|▏ | 105/4930 [00:23<19:53, 4.04it/s]
106
  2%|▏ | 106/4930 [00:24<18:27, 4.36it/s]
107
  2%|▏ | 107/4930 [00:24<17:29, 4.60it/s]
108
  2%|▏ | 108/4930 [00:24<15:57, 5.04it/s]
109
  2%|▏ | 109/4930 [00:24<19:28, 4.13it/s]
110
  2%|▏ | 110/4930 [00:25<18:19, 4.38it/s]
111
  2%|▏ | 111/4930 [00:25<19:41, 4.08it/s]
112
  2%|▏ | 112/4930 [00:25<19:12, 4.18it/s]
113
  2%|▏ | 113/4930 [00:25<17:47, 4.51it/s]
114
  2%|▏ | 114/4930 [00:25<17:25, 4.61it/s]
115
  2%|▏ | 115/4930 [00:26<17:13, 4.66it/s]
116
  2%|▏ | 116/4930 [00:26<17:26, 4.60it/s]
117
  2%|▏ | 117/4930 [00:26<16:58, 4.72it/s]
118
  2%|▏ | 118/4930 [00:26<16:42, 4.80it/s]
119
  2%|▏ | 119/4930 [00:26<15:29, 5.18it/s]
120
  2%|▏ | 120/4930 [00:27<17:31, 4.57it/s]
121
  2%|▏ | 121/4930 [00:27<16:51, 4.76it/s]
122
  2%|▏ | 122/4930 [00:27<17:36, 4.55it/s]
123
  2%|▏ | 123/4930 [00:27<16:47, 4.77it/s]
124
  3%|▎ | 124/4930 [00:27<16:01, 5.00it/s]
125
  3%|▎ | 125/4930 [00:28<15:18, 5.23it/s]
126
  3%|▎ | 126/4930 [00:28<15:52, 5.05it/s]
127
  3%|▎ | 127/4930 [00:28<15:13, 5.26it/s]
128
  3%|▎ | 128/4930 [00:28<14:35, 5.48it/s]
129
  3%|▎ | 129/4930 [00:28<14:45, 5.42it/s]
130
  3%|▎ | 130/4930 [00:29<14:24, 5.55it/s]
131
  3%|▎ | 131/4930 [00:29<16:55, 4.73it/s]
132
  3%|▎ | 132/4930 [00:29<16:08, 4.95it/s]
133
  3%|▎ | 133/4930 [00:29<18:32, 4.31it/s]
134
  3%|▎ | 134/4930 [00:29<16:45, 4.77it/s]
135
  3%|▎ | 135/4930 [00:30<17:32, 4.56it/s]
136
  3%|▎ | 136/4930 [00:30<18:54, 4.23it/s]
137
  3%|▎ | 137/4930 [00:30<18:34, 4.30it/s]
138
  3%|▎ | 138/4930 [00:30<16:50, 4.74it/s]
139
  3%|▎ | 139/4930 [00:31<17:08, 4.66it/s]
140
  3%|▎ | 140/4930 [00:31<17:32, 4.55it/s]
141
  3%|▎ | 141/4930 [00:31<19:20, 4.13it/s]
142
  3%|▎ | 142/4930 [00:31<19:48, 4.03it/s]
143
  3%|▎ | 143/4930 [00:32<18:30, 4.31it/s]
144
  3%|▎ | 144/4930 [00:32<17:27, 4.57it/s]
145
  3%|▎ | 145/4930 [00:32<16:30, 4.83it/s]
146
  3%|▎ | 146/4930 [00:32<17:19, 4.60it/s]
147
  3%|▎ | 147/4930 [00:33<19:39, 4.06it/s]
148
  3%|▎ | 148/4930 [00:33<18:16, 4.36it/s]
149
  3%|▎ | 149/4930 [00:33<16:31, 4.82it/s]
150
  3%|▎ | 150/4930 [00:33<18:43, 4.26it/s]
151
  3%|▎ | 151/4930 [00:33<19:40, 4.05it/s]
152
  3%|▎ | 152/4930 [00:34<18:52, 4.22it/s]
153
  3%|▎ | 153/4930 [00:34<18:54, 4.21it/s]
154
  3%|▎ | 154/4930 [00:34<17:31, 4.54it/s]
155
  3%|▎ | 155/4930 [00:34<16:31, 4.81it/s]
156
  3%|▎ | 156/4930 [00:34<16:02, 4.96it/s]
157
  3%|▎ | 157/4930 [00:35<15:51, 5.02it/s]
158
  3%|▎ | 158/4930 [00:35<16:30, 4.82it/s]
159
  3%|▎ | 159/4930 [00:35<15:40, 5.07it/s]
160
  3%|▎ | 160/4930 [00:35<15:49, 5.02it/s]
161
  3%|▎ | 161/4930 [00:35<17:10, 4.63it/s]
162
  3%|▎ | 162/4930 [00:36<16:19, 4.87it/s]
163
  3%|▎ | 163/4930 [00:36<14:57, 5.31it/s]
164
  3%|▎ | 164/4930 [00:36<15:22, 5.16it/s]
165
  3%|▎ | 165/4930 [00:36<15:35, 5.09it/s]
166
  3%|▎ | 166/4930 [00:36<15:44, 5.04it/s]
167
  3%|▎ | 167/4930 [00:37<15:19, 5.18it/s]
168
  3%|▎ | 168/4930 [00:37<17:17, 4.59it/s]
169
  3%|▎ | 169/4930 [00:37<17:02, 4.66it/s]
170
  3%|▎ | 170/4930 [00:37<16:57, 4.68it/s]
171
  3%|▎ | 171/4930 [00:37<15:37, 5.08it/s]
172
  3%|▎ | 172/4930 [00:38<17:06, 4.64it/s]
173
  4%|▎ | 173/4930 [00:38<17:24, 4.55it/s]
174
  4%|▎ | 174/4930 [00:38<16:56, 4.68it/s]
175
  4%|▎ | 175/4930 [00:38<17:25, 4.55it/s]
176
  4%|▎ | 176/4930 [00:39<16:33, 4.79it/s]
177
  4%|▎ | 177/4930 [00:39<18:27, 4.29it/s]
178
  4%|▎ | 178/4930 [00:39<17:24, 4.55it/s]
179
  4%|▎ | 179/4930 [00:39<16:50, 4.70it/s]
180
  4%|▎ | 180/4930 [00:39<17:14, 4.59it/s]
181
  4%|▎ | 181/4930 [00:40<16:23, 4.83it/s]
182
  4%|▎ | 182/4930 [00:40<16:01, 4.94it/s]
183
  4%|▎ | 183/4930 [00:40<17:26, 4.53it/s]
184
  4%|▎ | 184/4930 [00:40<18:12, 4.34it/s]
185
  4%|▍ | 185/4930 [00:41<17:31, 4.51it/s]
186
  4%|▍ | 186/4930 [00:41<16:44, 4.72it/s]
187
  4%|▍ | 187/4930 [00:41<17:06, 4.62it/s]
188
  4%|▍ | 188/4930 [00:41<16:34, 4.77it/s]
189
  4%|▍ | 189/4930 [00:41<16:05, 4.91it/s]
190
  4%|▍ | 190/4930 [00:42<16:20, 4.83it/s]
191
  4%|▍ | 191/4930 [00:42<15:13, 5.19it/s]
192
  4%|▍ | 192/4930 [00:42<16:24, 4.81it/s]
193
  4%|▍ | 193/4930 [00:42<17:06, 4.61it/s]
194
  4%|▍ | 194/4930 [00:42<16:32, 4.77it/s]
195
  4%|▍ | 195/4930 [00:43<16:10, 4.88it/s]
196
  4%|▍ | 196/4930 [00:43<15:53, 4.96it/s]
197
  4%|▍ | 197/4930 [00:43<16:19, 4.83it/s]
198
  4%|▍ | 198/4930 [00:43<16:29, 4.78it/s]
199
  4%|▍ | 199/4930 [00:43<16:14, 4.85it/s]
200
  4%|▍ | 200/4930 [00:44<16:23, 4.81it/s]
201
  4%|▍ | 201/4930 [00:44<16:08, 4.88it/s]
202
  4%|▍ | 202/4930 [00:44<16:31, 4.77it/s]
203
  4%|▍ | 203/4930 [00:44<17:19, 4.55it/s]
204
  4%|▍ | 204/4930 [00:44<16:22, 4.81it/s]
205
  4%|▍ | 205/4930 [00:45<16:20, 4.82it/s]
206
  4%|▍ | 206/4930 [00:45<16:31, 4.77it/s]
207
  4%|▍ | 207/4930 [00:45<15:44, 5.00it/s]
208
  4%|▍ | 208/4930 [00:45<18:07, 4.34it/s]
209
  4%|▍ | 209/4930 [00:46<16:26, 4.79it/s]
210
  4%|▍ | 210/4930 [00:46<16:20, 4.81it/s]
211
  4%|▍ | 211/4930 [00:46<18:59, 4.14it/s]
212
  4%|▍ | 212/4930 [00:46<17:03, 4.61it/s]
213
  4%|▍ | 213/4930 [00:46<17:30, 4.49it/s]
214
  4%|▍ | 214/4930 [00:47<16:41, 4.71it/s]
215
  4%|▍ | 215/4930 [00:47<17:29, 4.49it/s]
216
  4%|▍ | 216/4930 [00:47<16:01, 4.90it/s]
217
  4%|▍ | 217/4930 [00:47<15:51, 4.95it/s]
218
  4%|▍ | 218/4930 [00:47<16:01, 4.90it/s]
219
  4%|▍ | 219/4930 [00:48<17:25, 4.51it/s]
220
  4%|▍ | 220/4930 [00:48<16:12, 4.84it/s]
221
  4%|▍ | 221/4930 [00:48<17:08, 4.58it/s]
222
  5%|▍ | 222/4930 [00:48<16:27, 4.77it/s]
223
  5%|▍ | 223/4930 [00:49<16:04, 4.88it/s]
224
  5%|▍ | 224/4930 [00:49<15:41, 5.00it/s]
225
  5%|▍ | 225/4930 [00:49<15:25, 5.08it/s]
226
  5%|▍ | 226/4930 [00:49<15:24, 5.09it/s]
227
  5%|▍ | 227/4930 [00:49<16:03, 4.88it/s]
228
  5%|▍ | 228/4930 [00:50<16:59, 4.61it/s]
229
  5%|▍ | 229/4930 [00:50<16:20, 4.79it/s]
230
  5%|▍ | 230/4930 [00:50<16:12, 4.83it/s]
231
  5%|▍ | 231/4930 [00:50<17:05, 4.58it/s]
232
  5%|▍ | 232/4930 [00:51<19:36, 3.99it/s]
233
  5%|▍ | 233/4930 [00:51<18:32, 4.22it/s]
234
  5%|▍ | 234/4930 [00:51<17:51, 4.38it/s]
235
  5%|▍ | 235/4930 [00:51<17:57, 4.36it/s]
236
  5%|▍ | 236/4930 [00:51<18:19, 4.27it/s]
237
  5%|▍ | 237/4930 [00:52<18:38, 4.20it/s]
238
  5%|▍ | 238/4930 [00:52<17:38, 4.43it/s]
239
  5%|▍ | 239/4930 [00:52<17:47, 4.39it/s]
240
  5%|▍ | 240/4930 [00:52<17:17, 4.52it/s]
241
  5%|▍ | 241/4930 [00:53<17:12, 4.54it/s]
242
  5%|▍ | 242/4930 [00:53<16:39, 4.69it/s]
243
  5%|▍ | 243/4930 [00:53<16:41, 4.68it/s]
244
  5%|▍ | 244/4930 [00:53<16:10, 4.83it/s]
245
  5%|▍ | 245/4930 [00:53<16:25, 4.75it/s]
246
  5%|▍ | 246/4930 [00:54<15:39, 4.98it/s]
247
  5%|▌ | 247/4930 [00:54<16:58, 4.60it/s]
248
  5%|▌ | 248/4930 [00:54<16:27, 4.74it/s]
249
  5%|▌ | 249/4930 [00:54<15:42, 4.97it/s]
250
  5%|▌ | 250/4930 [00:54<16:18, 4.78it/s]
251
  5%|▌ | 251/4930 [00:55<16:28, 4.73it/s]
252
  5%|▌ | 252/4930 [00:55<15:26, 5.05it/s]
253
  5%|▌ | 253/4930 [00:55<14:37, 5.33it/s]
254
  5%|▌ | 254/4930 [00:55<15:17, 5.10it/s]
255
  5%|▌ | 255/4930 [00:55<14:00, 5.56it/s]
256
  5%|▌ | 256/4930 [00:55<14:32, 5.36it/s]
257
  5%|▌ | 257/4930 [00:56<14:21, 5.42it/s]
258
  5%|▌ | 258/4930 [00:56<14:47, 5.26it/s]
259
  5%|▌ | 259/4930 [00:56<15:16, 5.10it/s]
260
  5%|▌ | 260/4930 [00:56<14:21, 5.42it/s]
261
  5%|▌ | 261/4930 [00:56<14:39, 5.31it/s]
262
  5%|▌ | 262/4930 [00:57<14:41, 5.29it/s]
263
  5%|▌ | 263/4930 [00:57<15:21, 5.06it/s]
264
  5%|▌ | 264/4930 [00:57<16:11, 4.80it/s]
265
  5%|▌ | 265/4930 [00:57<15:36, 4.98it/s]
266
  5%|▌ | 266/4930 [00:57<14:44, 5.28it/s]
267
  5%|▌ | 267/4930 [00:58<14:39, 5.30it/s]
268
  5%|▌ | 268/4930 [00:58<14:55, 5.21it/s]
269
  5%|▌ | 269/4930 [00:58<15:29, 5.02it/s]
270
  5%|▌ | 270/4930 [00:58<17:01, 4.56it/s]
271
  5%|▌ | 271/4930 [00:58<16:31, 4.70it/s]
272
  6%|▌ | 272/4930 [00:59<16:05, 4.83it/s]
273
  6%|▌ | 273/4930 [00:59<17:16, 4.49it/s]
274
  6%|▌ | 274/4930 [00:59<17:10, 4.52it/s]
275
  6%|▌ | 275/4930 [00:59<15:58, 4.85it/s]
276
  6%|▌ | 276/4930 [01:00<15:32, 4.99it/s]
277
  6%|▌ | 277/4930 [01:00<15:31, 5.00it/s]
278
  6%|▌ | 278/4930 [01:00<15:28, 5.01it/s]
279
  6%|▌ | 279/4930 [01:00<16:01, 4.84it/s]
280
  6%|▌ | 280/4930 [01:00<15:04, 5.14it/s]
281
  6%|▌ | 281/4930 [01:01<16:15, 4.77it/s]
282
  6%|▌ | 282/4930 [01:01<17:23, 4.46it/s]
283
  6%|▌ | 283/4930 [01:01<16:03, 4.82it/s]
284
  6%|▌ | 284/4930 [01:01<16:02, 4.83it/s]
285
  6%|▌ | 285/4930 [01:01<16:37, 4.65it/s]
286
  6%|▌ | 286/4930 [01:02<16:21, 4.73it/s]
287
  6%|▌ | 287/4930 [01:02<15:15, 5.07it/s]
288
  6%|▌ | 288/4930 [01:02<14:26, 5.35it/s]
289
  6%|▌ | 289/4930 [01:02<13:41, 5.65it/s]
290
  6%|▌ | 290/4930 [01:02<13:48, 5.60it/s]
291
  6%|▌ | 291/4930 [01:03<14:52, 5.20it/s]
292
  6%|▌ | 292/4930 [01:03<14:26, 5.35it/s]
293
  6%|▌ | 293/4930 [01:03<13:47, 5.60it/s]
294
  6%|▌ | 294/4930 [01:03<13:52, 5.57it/s]
295
  6%|▌ | 295/4930 [01:03<15:00, 5.15it/s]
296
  6%|▌ | 296/4930 [01:04<17:24, 4.44it/s]
297
  6%|▌ | 297/4930 [01:04<18:54, 4.08it/s]
298
  6%|▌ | 298/4930 [01:04<18:24, 4.19it/s]
299
  6%|▌ | 299/4930 [01:04<18:13, 4.24it/s]
300
  6%|▌ | 300/4930 [01:05<18:14, 4.23it/s]
301
  6%|▌ | 301/4930 [01:05<17:28, 4.41it/s]
302
  6%|▌ | 302/4930 [01:05<16:54, 4.56it/s]
303
  6%|▌ | 303/4930 [01:05<15:37, 4.94it/s]
304
  6%|▌ | 304/4930 [01:05<15:03, 5.12it/s]
305
  6%|▌ | 305/4930 [01:05<15:24, 5.00it/s]
306
  6%|▌ | 306/4930 [01:06<15:45, 4.89it/s]
307
  6%|▌ | 307/4930 [01:06<17:42, 4.35it/s]
308
  6%|▌ | 308/4930 [01:06<17:01, 4.53it/s]
309
  6%|▋ | 309/4930 [01:06<17:07, 4.50it/s]
310
  6%|▋ | 310/4930 [01:07<16:29, 4.67it/s]
311
  6%|▋ | 311/4930 [01:07<16:07, 4.77it/s]
312
  6%|▋ | 312/4930 [01:07<15:49, 4.86it/s]
313
  6%|▋ | 313/4930 [01:07<14:33, 5.29it/s]
314
  6%|▋ | 314/4930 [01:07<15:00, 5.13it/s]
315
  6%|▋ | 315/4930 [01:08<14:39, 5.25it/s]
316
  6%|▋ | 316/4930 [01:08<15:47, 4.87it/s]
317
  6%|▋ | 317/4930 [01:08<15:00, 5.12it/s]
318
  6%|▋ | 318/4930 [01:08<15:33, 4.94it/s]
319
  6%|▋ | 319/4930 [01:08<14:27, 5.32it/s]
320
  6%|▋ | 320/4930 [01:09<14:12, 5.41it/s]
321
  7%|▋ | 321/4930 [01:09<16:18, 4.71it/s]
322
  7%|▋ | 322/4930 [01:09<15:17, 5.02it/s]
323
  7%|▋ | 323/4930 [01:09<15:06, 5.08it/s]
324
  7%|▋ | 324/4930 [01:09<14:59, 5.12it/s]
325
  7%|▋ | 325/4930 [01:10<15:17, 5.02it/s]
326
  7%|▋ | 326/4930 [01:10<15:43, 4.88it/s]
327
  7%|▋ | 327/4930 [01:10<16:05, 4.77it/s]
328
  7%|▋ | 328/4930 [01:10<18:01, 4.26it/s]
329
  7%|▋ | 329/4930 [01:10<16:56, 4.53it/s]
330
  7%|▋ | 330/4930 [01:11<17:02, 4.50it/s]
331
  7%|▋ | 331/4930 [01:11<16:05, 4.76it/s]
332
  7%|▋ | 332/4930 [01:11<15:55, 4.81it/s]
333
  7%|▋ | 333/4930 [01:11<15:01, 5.10it/s]
334
  7%|▋ | 334/4930 [01:11<15:06, 5.07it/s]
335
  7%|▋ | 335/4930 [01:12<15:27, 4.95it/s]
336
  7%|▋ | 336/4930 [01:12<15:20, 4.99it/s]
337
  7%|▋ | 337/4930 [01:12<15:58, 4.79it/s]
338
  7%|▋ | 338/4930 [01:12<18:06, 4.23it/s]
339
  7%|▋ | 339/4930 [01:13<17:35, 4.35it/s]
340
  7%|▋ | 340/4930 [01:13<17:55, 4.27it/s]
341
  7%|▋ | 341/4930 [01:13<16:16, 4.70it/s]
342
  7%|▋ | 342/4930 [01:13<16:12, 4.72it/s]
343
  7%|▋ | 343/4930 [01:13<17:05, 4.47it/s]
344
  7%|▋ | 344/4930 [01:14<16:38, 4.59it/s]
345
  7%|▋ | 345/4930 [01:14<15:14, 5.01it/s]
346
  7%|▋ | 346/4930 [01:14<15:33, 4.91it/s]
347
  7%|▋ | 347/4930 [01:14<16:12, 4.71it/s]
348
  7%|▋ | 348/4930 [01:14<16:17, 4.69it/s]
349
  7%|▋ | 349/4930 [01:15<16:18, 4.68it/s]
350
  7%|▋ | 350/4930 [01:15<15:50, 4.82it/s]
351
  7%|▋ | 351/4930 [01:15<14:53, 5.12it/s]
352
  7%|▋ | 352/4930 [01:15<14:46, 5.16it/s]
353
  7%|▋ | 353/4930 [01:15<14:29, 5.27it/s]
354
  7%|▋ | 354/4930 [01:16<13:56, 5.47it/s]
355
  7%|▋ | 355/4930 [01:16<14:31, 5.25it/s]
356
  7%|▋ | 356/4930 [01:16<15:43, 4.85it/s]
357
  7%|▋ | 357/4930 [01:16<15:09, 5.03it/s]
358
  7%|▋ | 358/4930 [01:16<16:19, 4.67it/s]
359
  7%|▋ | 359/4930 [01:17<16:08, 4.72it/s]
360
  7%|▋ | 360/4930 [01:17<15:27, 4.93it/s]
361
  7%|▋ | 361/4930 [01:17<16:27, 4.63it/s]
362
  7%|▋ | 362/4930 [01:17<16:22, 4.65it/s]
363
  7%|▋ | 363/4930 [01:18<15:58, 4.76it/s]
364
  7%|▋ | 364/4930 [01:18<14:51, 5.12it/s]
365
  7%|▋ | 365/4930 [01:18<14:59, 5.08it/s]
366
  7%|▋ | 366/4930 [01:18<13:45, 5.53it/s]
367
  7%|▋ | 367/4930 [01:18<15:20, 4.96it/s]
368
  7%|▋ | 368/4930 [01:19<15:38, 4.86it/s]
369
  7%|▋ | 369/4930 [01:19<14:55, 5.09it/s]
370
  8%|▊ | 370/4930 [01:19<15:58, 4.76it/s]
371
  8%|▊ | 371/4930 [01:19<16:39, 4.56it/s]
372
  8%|▊ | 372/4930 [01:19<15:58, 4.76it/s]
373
  8%|▊ | 373/4930 [01:20<16:19, 4.65it/s]
374
  8%|▊ | 374/4930 [01:20<15:41, 4.84it/s]
375
  8%|▊ | 375/4930 [01:20<15:18, 4.96it/s]
376
  8%|▊ | 376/4930 [01:20<15:24, 4.93it/s]
377
  8%|▊ | 377/4930 [01:20<14:21, 5.28it/s]
378
  8%|▊ | 378/4930 [01:21<14:16, 5.31it/s]
379
  8%|▊ | 379/4930 [01:21<14:43, 5.15it/s]
380
  8%|▊ | 380/4930 [01:21<18:25, 4.11it/s]
381
  8%|▊ | 381/4930 [01:21<17:58, 4.22it/s]
382
  8%|▊ | 382/4930 [01:21<16:51, 4.50it/s]
383
  8%|▊ | 383/4930 [01:22<16:10, 4.68it/s]
384
  8%|▊ | 384/4930 [01:22<19:05, 3.97it/s]
385
  8%|▊ | 385/4930 [01:22<16:39, 4.55it/s]
386
  8%|▊ | 386/4930 [01:22<15:07, 5.01it/s]
387
  8%|▊ | 387/4930 [01:23<15:07, 5.01it/s]
388
  8%|▊ | 388/4930 [01:23<14:38, 5.17it/s]
389
  8%|▊ | 389/4930 [01:23<14:53, 5.08it/s]
390
  8%|▊ | 390/4930 [01:23<15:16, 4.95it/s]
391
  8%|▊ | 391/4930 [01:23<17:21, 4.36it/s]
392
  8%|▊ | 392/4930 [01:24<16:46, 4.51it/s]
393
  8%|▊ | 393/4930 [01:24<16:18, 4.64it/s]
394
  8%|▊ | 394/4930 [01:24<16:42, 4.52it/s]
395
  8%|▊ | 395/4930 [01:24<16:55, 4.46it/s]
396
  8%|▊ | 396/4930 [01:25<17:28, 4.32it/s]
397
  8%|▊ | 397/4930 [01:25<16:29, 4.58it/s]
398
  8%|▊ | 398/4930 [01:25<15:22, 4.91it/s]
399
  8%|▊ | 399/4930 [01:25<17:34, 4.30it/s]
400
  8%|▊ | 400/4930 [01:25<17:47, 4.24it/s]
401
  8%|▊ | 401/4930 [01:26<15:43, 4.80it/s]
402
  8%|▊ | 402/4930 [01:26<15:33, 4.85it/s]
403
  8%|▊ | 403/4930 [01:26<15:58, 4.73it/s]
404
  8%|▊ | 404/4930 [01:26<15:49, 4.76it/s]
405
  8%|▊ | 405/4930 [01:26<15:45, 4.79it/s]
406
  8%|▊ | 406/4930 [01:27<15:02, 5.01it/s]
407
  8%|▊ | 407/4930 [01:27<15:15, 4.94it/s]
408
  8%|▊ | 408/4930 [01:27<14:58, 5.03it/s]
409
  8%|▊ | 409/4930 [01:27<14:35, 5.16it/s]
410
  8%|▊ | 410/4930 [01:27<14:57, 5.04it/s]
411
  8%|▊ | 411/4930 [01:28<14:59, 5.02it/s]
412
  8%|▊ | 412/4930 [01:28<14:45, 5.10it/s]
413
  8%|▊ | 413/4930 [01:28<16:58, 4.44it/s]
414
  8%|▊ | 414/4930 [01:28<16:46, 4.49it/s]
415
  8%|▊ | 415/4930 [01:28<15:29, 4.86it/s]
416
  8%|▊ | 416/4930 [01:29<15:50, 4.75it/s]
417
  8%|▊ | 417/4930 [01:29<16:34, 4.54it/s]
418
  8%|▊ | 418/4930 [01:29<15:53, 4.73it/s]
419
  8%|▊ | 419/4930 [01:29<16:57, 4.43it/s]
420
  9%|▊ | 420/4930 [01:30<15:25, 4.87it/s]
421
  9%|▊ | 421/4930 [01:30<14:48, 5.08it/s]
422
  9%|▊ | 422/4930 [01:30<15:45, 4.77it/s]
423
  9%|▊ | 423/4930 [01:30<18:09, 4.14it/s]
424
  9%|▊ | 424/4930 [01:31<20:33, 3.65it/s]
425
  9%|▊ | 425/4930 [01:31<20:41, 3.63it/s]
426
  9%|▊ | 426/4930 [01:31<18:45, 4.00it/s]
427
  9%|▊ | 427/4930 [01:31<18:02, 4.16it/s]
428
  9%|▊ | 428/4930 [01:31<16:15, 4.62it/s]
429
  9%|▊ | 429/4930 [01:32<16:02, 4.68it/s]
430
  9%|▊ | 430/4930 [01:32<17:15, 4.35it/s]
431
  9%|▊ | 431/4930 [01:32<15:43, 4.77it/s]
432
  9%|▉ | 432/4930 [01:32<15:26, 4.86it/s]
433
  9%|▉ | 433/4930 [01:33<16:07, 4.65it/s]
434
  9%|▉ | 434/4930 [01:33<16:37, 4.51it/s]
435
  9%|▉ | 435/4930 [01:33<15:25, 4.85it/s]
436
  9%|▉ | 436/4930 [01:33<16:35, 4.52it/s]
437
  9%|▉ | 437/4930 [01:33<16:49, 4.45it/s]
438
  9%|▉ | 438/4930 [01:34<16:36, 4.51it/s]
439
  9%|▉ | 439/4930 [01:34<15:15, 4.91it/s]
440
  9%|▉ | 440/4930 [01:34<17:09, 4.36it/s]
441
  9%|▉ | 441/4930 [01:34<18:55, 3.95it/s]
442
  9%|▉ | 442/4930 [01:35<17:50, 4.19it/s]
443
  9%|▉ | 443/4930 [01:35<16:16, 4.60it/s]
444
  9%|▉ | 444/4930 [01:35<15:37, 4.78it/s]
445
  9%|▉ | 445/4930 [01:35<16:22, 4.56it/s]
446
  9%|▉ | 446/4930 [01:35<17:37, 4.24it/s]
447
  9%|▉ | 447/4930 [01:36<16:40, 4.48it/s]
448
  9%|▉ | 448/4930 [01:36<15:54, 4.70it/s]
449
  9%|▉ | 449/4930 [01:36<15:23, 4.85it/s]
450
  9%|▉ | 450/4930 [01:36<17:26, 4.28it/s]
451
  9%|▉ | 451/4930 [01:37<16:05, 4.64it/s]
452
  9%|▉ | 452/4930 [01:37<15:16, 4.88it/s]
453
  9%|▉ | 453/4930 [01:37<16:45, 4.45it/s]
454
  9%|▉ | 454/4930 [01:37<16:10, 4.61it/s]
455
  9%|▉ | 455/4930 [01:37<17:14, 4.33it/s]
456
  9%|▉ | 456/4930 [01:38<16:39, 4.48it/s]
457
  9%|▉ | 457/4930 [01:38<18:56, 3.94it/s]
458
  9%|▉ | 458/4930 [01:38<18:08, 4.11it/s]
459
  9%|▉ | 459/4930 [01:38<18:48, 3.96it/s]
460
  9%|▉ | 460/4930 [01:39<17:42, 4.21it/s]
461
  9%|▉ | 461/4930 [01:39<18:43, 3.98it/s]
462
  9%|▉ | 462/4930 [01:39<17:00, 4.38it/s]
463
  9%|▉ | 463/4930 [01:39<16:23, 4.54it/s]
464
  9%|▉ | 464/4930 [01:39<14:47, 5.03it/s]
465
  9%|▉ | 465/4930 [01:40<17:55, 4.15it/s]
466
  9%|▉ | 466/4930 [01:40<18:11, 4.09it/s]
467
  9%|▉ | 467/4930 [01:40<16:44, 4.44it/s]
468
  9%|▉ | 468/4930 [01:40<15:14, 4.88it/s]
469
  10%|▉ | 469/4930 [01:41<16:52, 4.40it/s]
470
  10%|▉ | 470/4930 [01:41<16:49, 4.42it/s]
471
  10%|▉ | 471/4930 [01:41<15:01, 4.94it/s]
472
  10%|▉ | 472/4930 [01:41<14:32, 5.11it/s]
473
  10%|▉ | 473/4930 [01:41<16:08, 4.60it/s]
474
  10%|▉ | 474/4930 [01:42<15:31, 4.79it/s]
475
  10%|▉ | 475/4930 [01:42<15:23, 4.82it/s]
476
  10%|▉ | 476/4930 [01:42<15:57, 4.65it/s]
477
  10%|▉ | 477/4930 [01:42<16:32, 4.48it/s]
478
  10%|▉ | 478/4930 [01:43<16:11, 4.58it/s]
479
  10%|▉ | 479/4930 [01:43<15:54, 4.66it/s]
480
  10%|▉ | 480/4930 [01:43<14:28, 5.12it/s]
481
  10%|▉ | 481/4930 [01:43<16:18, 4.55it/s]
482
  10%|▉ | 482/4930 [01:43<16:06, 4.60it/s]
483
  10%|▉ | 483/4930 [01:44<16:41, 4.44it/s]
484
  10%|▉ | 484/4930 [01:44<19:15, 3.85it/s]
485
  10%|▉ | 485/4930 [01:44<18:48, 3.94it/s]
486
  10%|▉ | 486/4930 [01:44<16:13, 4.56it/s]
487
  10%|▉ | 487/4930 [01:45<16:30, 4.49it/s]
488
  10%|▉ | 488/4930 [01:45<14:39, 5.05it/s]
489
  10%|▉ | 489/4930 [01:45<15:58, 4.63it/s]
490
  10%|▉ | 490/4930 [01:45<16:12, 4.57it/s]
491
  10%|▉ | 491/4930 [01:45<15:34, 4.75it/s]
492
  10%|▉ | 492/4930 [01:46<15:09, 4.88it/s]
493
  10%|█ | 493/4930 [01:46<14:25, 5.13it/s][INFO|trainer.py:811] 2024-09-05 09:22:40,903 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
494
  0%| | 0/869 [00:00<?, ?it/s]
 
495
  1%|▏ | 11/869 [00:00<00:08, 103.25it/s]
 
496
  3%|▎ | 22/869 [00:00<00:08, 94.51it/s] 
 
497
  4%|▎ | 32/869 [00:00<00:09, 92.15it/s]
 
498
  5%|▍ | 42/869 [00:00<00:08, 94.01it/s]
 
499
  6%|▌ | 52/869 [00:00<00:08, 94.91it/s]
 
500
  7%|▋ | 62/869 [00:00<00:08, 93.97it/s]
 
501
  8%|▊ | 72/869 [00:00<00:08, 92.79it/s]
 
502
  10%|▉ | 83/869 [00:00<00:08, 95.53it/s]
 
503
  11%|█ | 94/869 [00:00<00:07, 97.60it/s]
 
504
  12%|█▏ | 105/869 [00:01<00:07, 98.01it/s]
 
505
  13%|█▎ | 115/869 [00:01<00:07, 96.90it/s]
 
506
  14%|█▍ | 125/869 [00:01<00:07, 96.16it/s]
 
507
  16%|█▌ | 135/869 [00:01<00:07, 95.51it/s]
 
508
  17%|█▋ | 145/869 [00:01<00:07, 91.56it/s]
 
509
  18%|█▊ | 155/869 [00:01<00:07, 90.74it/s]
 
510
  19%|█▉ | 165/869 [00:01<00:07, 90.55it/s]
 
511
  20%|██ | 175/869 [00:01<00:07, 91.19it/s]
 
512
  21%|██▏ | 185/869 [00:01<00:07, 91.19it/s]
 
513
  22%|██▏ | 195/869 [00:02<00:07, 91.09it/s]
 
514
  24%|██▎ | 205/869 [00:02<00:07, 92.13it/s]
 
515
  25%|██▍ | 215/869 [00:02<00:06, 93.48it/s]
 
516
  26%|██▌ | 225/869 [00:02<00:06, 93.18it/s]
 
517
  27%|██▋ | 235/869 [00:02<00:07, 89.87it/s]
 
518
  28%|██▊ | 245/869 [00:02<00:07, 87.95it/s]
 
519
  29%|██▉ | 255/869 [00:02<00:06, 90.95it/s]
 
520
  30%|███ | 265/869 [00:02<00:06, 91.17it/s]
 
521
  32%|███▏ | 275/869 [00:02<00:06, 91.19it/s]
 
522
  33%|███▎ | 285/869 [00:03<00:06, 90.28it/s]
 
523
  34%|███▍ | 295/869 [00:03<00:06, 90.15it/s]
 
524
  35%|███▌ | 305/869 [00:03<00:06, 89.02it/s]
 
525
  36%|███▌ | 314/869 [00:03<00:06, 87.96it/s]
 
526
  37%|███▋ | 323/869 [00:03<00:06, 88.23it/s]
 
527
  38%|███▊ | 333/869 [00:03<00:05, 91.27it/s]
 
528
  39%|███▉ | 343/869 [00:03<00:05, 89.43it/s]
 
529
  41%|████ | 353/869 [00:03<00:05, 90.77it/s]
 
530
  42%|████▏ | 364/869 [00:03<00:05, 93.69it/s]
 
531
  43%|████▎ | 374/869 [00:04<00:05, 91.84it/s]
 
532
  44%|████▍ | 384/869 [00:04<00:05, 92.74it/s]
 
533
  45%|████▌ | 394/869 [00:04<00:05, 91.24it/s]
 
534
  46%|████▋ | 404/869 [00:04<00:05, 91.96it/s]
 
535
  48%|████▊ | 415/869 [00:04<00:04, 94.67it/s]
 
536
  49%|████▉ | 425/869 [00:04<00:04, 95.44it/s]
 
537
  50%|█████ | 435/869 [00:04<00:04, 94.99it/s]
 
538
  51%|█████ | 445/869 [00:04<00:04, 91.28it/s]
 
539
  52%|█████▏ | 455/869 [00:04<00:04, 92.99it/s]
 
540
  54%|█████▎ | 465/869 [00:05<00:04, 92.53it/s]
 
541
  55%|█████▍ | 476/869 [00:05<00:04, 94.96it/s]
 
542
  56%|█████▌ | 486/869 [00:05<00:04, 95.18it/s]
 
543
  57%|█████▋ | 496/869 [00:05<00:04, 92.41it/s]
 
544
  58%|█████▊ | 506/869 [00:05<00:03, 91.71it/s]
 
545
  59%|█████▉ | 516/869 [00:05<00:03, 93.31it/s]
 
546
  61%|██████ | 526/869 [00:05<00:03, 90.17it/s]
 
547
  62%|██████▏ | 536/869 [00:05<00:03, 91.18it/s]
 
548
  63%|██████▎ | 546/869 [00:05<00:03, 90.09it/s]
 
549
  64%|██████▍ | 556/869 [00:06<00:03, 91.46it/s]
 
550
  65%|██████▌ | 566/869 [00:06<00:03, 91.45it/s]
 
551
  66%|██████▋ | 576/869 [00:06<00:03, 90.59it/s]
 
552
  67%|██████▋ | 586/869 [00:06<00:03, 89.70it/s]
 
553
  69%|██████▊ | 596/869 [00:06<00:02, 91.08it/s]
 
554
  70%|██████▉ | 606/869 [00:06<00:02, 92.81it/s]
 
555
  71%|███████ | 616/869 [00:06<00:02, 92.49it/s]
 
556
  72%|███████▏ | 626/869 [00:06<00:02, 93.28it/s]
 
557
  73%|███████▎ | 636/869 [00:06<00:02, 90.97it/s]
 
558
  74%|███████▍ | 646/869 [00:07<00:02, 91.79it/s]
 
559
  75%|███████▌ | 656/869 [00:07<00:02, 93.04it/s]
 
560
  77%|███████▋ | 666/869 [00:07<00:02, 92.60it/s]
 
561
  78%|███████▊ | 676/869 [00:07<00:02, 93.70it/s]
 
562
  79%|███████▉ | 686/869 [00:07<00:02, 86.84it/s]
 
563
  80%|████████ | 696/869 [00:07<00:01, 88.89it/s]
 
564
  81%|████████ | 705/869 [00:07<00:01, 88.84it/s]
 
565
  82%|████████▏ | 715/869 [00:07<00:01, 90.18it/s]
 
566
  83%|████████▎ | 725/869 [00:07<00:01, 91.74it/s]
 
567
  85%|████████▍ | 735/869 [00:07<00:01, 91.93it/s]
 
568
  86%|████████▌ | 745/869 [00:08<00:01, 92.83it/s]
 
569
  87%|████████▋ | 755/869 [00:08<00:01, 93.13it/s]
 
570
  88%|████████▊ | 765/869 [00:08<00:01, 92.30it/s]
 
571
  89%|████████▉ | 775/869 [00:08<00:01, 93.61it/s]
 
572
  90%|█████████ | 785/869 [00:08<00:00, 87.82it/s]
 
573
  91%|█████████▏| 795/869 [00:08<00:00, 90.27it/s]
 
574
  93%|█████████▎| 805/869 [00:08<00:00, 92.07it/s]
 
575
  94%|█████████▍| 815/869 [00:08<00:00, 91.94it/s]
 
576
  95%|█████████▍| 825/869 [00:08<00:00, 92.65it/s]
 
577
  96%|█████████▌| 835/869 [00:09<00:00, 93.01it/s]
 
578
  97%|█████████▋| 845/869 [00:09<00:00, 94.42it/s]
 
579
  98%|█████████▊| 855/869 [00:09<00:00, 94.77it/s]
 
580
 
 
581
 
582
  10%|█ | 493/4930 [01:59<14:25, 5.13it/s]
 
 
583
  [INFO|trainer.py:3503] 2024-09-05 09:22:54,048 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-493
 
 
 
 
 
 
 
584
  10%|█ | 494/4930 [02:02<6:07:04, 4.96s/it]
585
  10%|█ | 495/4930 [02:02<4:22:14, 3.55s/it]
586
  10%|█ | 496/4930 [02:02<3:08:13, 2.55s/it]
587
  10%|█ | 497/4930 [02:03<2:16:06, 1.84s/it]
588
  10%|█ | 498/4930 [02:03<1:39:48, 1.35s/it]
589
  10%|█ | 499/4930 [02:03<1:13:38, 1.00it/s]
590
  10%|█ | 500/4930 [02:03<55:44, 1.32it/s]
591
 
592
  10%|█ | 500/4930 [02:03<55:44, 1.32it/s]
593
  10%|█ | 501/4930 [02:03<43:09, 1.71it/s]
594
  10%|█ | 502/4930 [02:03<34:29, 2.14it/s]
595
  10%|█ | 503/4930 [02:04<28:10, 2.62it/s]
596
  10%|█ | 504/4930 [02:04<26:45, 2.76it/s]
597
  10%|█ | 505/4930 [02:04<24:10, 3.05it/s]
598
  10%|█ | 506/4930 [02:04<20:24, 3.61it/s]
599
  10%|█ | 507/4930 [02:05<19:29, 3.78it/s]
600
  10%|█ | 508/4930 [02:05<17:45, 4.15it/s]
601
  10%|█ | 509/4930 [02:05<18:47, 3.92it/s]
602
  10%|█ | 510/4930 [02:05<17:44, 4.15it/s]
603
  10%|█ | 511/4930 [02:05<16:28, 4.47it/s]
604
  10%|█ | 512/4930 [02:06<18:17, 4.03it/s]
605
  10%|█ | 513/4930 [02:06<16:56, 4.34it/s]
606
  10%|█ | 514/4930 [02:06<16:38, 4.42it/s]
607
  10%|█ | 515/4930 [02:07<18:48, 3.91it/s]
608
  10%|█ | 516/4930 [02:07<17:39, 4.17it/s]
609
  10%|█ | 517/4930 [02:07<15:58, 4.61it/s]
610
  11%|█ | 518/4930 [02:07<15:05, 4.88it/s]
611
  11%|█ | 519/4930 [02:07<15:18, 4.80it/s]
612
  11%|█ | 520/4930 [02:07<15:11, 4.84it/s]
613
  11%|█ | 521/4930 [02:08<16:26, 4.47it/s]
614
  11%|█ | 522/4930 [02:08<16:13, 4.53it/s]
615
  11%|█ | 523/4930 [02:08<14:35, 5.03it/s]
616
  11%|█ | 524/4930 [02:08<13:44, 5.34it/s]
617
  11%|█ | 525/4930 [02:09<15:54, 4.62it/s]
618
  11%|█ | 526/4930 [02:09<16:03, 4.57it/s]
619
  11%|█ | 527/4930 [02:09<16:09, 4.54it/s]
620
  11%|█ | 528/4930 [02:09<15:03, 4.87it/s]
621
  11%|█ | 529/4930 [02:09<15:05, 4.86it/s]
622
  11%|█ | 530/4930 [02:10<14:27, 5.07it/s]
623
  11%|█ | 531/4930 [02:10<16:03, 4.57it/s]
624
  11%|█ | 532/4930 [02:10<15:26, 4.75it/s]
625
  11%|█ | 533/4930 [02:10<14:59, 4.89it/s]
626
  11%|█ | 534/4930 [02:10<14:51, 4.93it/s]
627
  11%|█ | 535/4930 [02:11<14:11, 5.16it/s]
628
  11%|█ | 536/4930 [02:11<15:05, 4.85it/s]
629
  11%|█ | 537/4930 [02:11<14:26, 5.07it/s]
630
  11%|█ | 538/4930 [02:11<14:13, 5.15it/s]
631
  11%|█ | 539/4930 [02:11<15:19, 4.78it/s]
632
  11%|█ | 540/4930 [02:12<16:56, 4.32it/s]
633
  11%|█ | 541/4930 [02:12<16:18, 4.49it/s]
634
  11%|█ | 542/4930 [02:12<17:36, 4.16it/s]
635
  11%|█ | 543/4930 [02:12<16:14, 4.50it/s]
636
  11%|█ | 544/4930 [02:13<15:42, 4.65it/s]
637
  11%|█ | 545/4930 [02:13<16:11, 4.51it/s]
638
  11%|█ | 546/4930 [02:13<14:50, 4.93it/s]
639
  11%|█ | 547/4930 [02:13<14:54, 4.90it/s]
640
  11%|█ | 548/4930 [02:13<15:31, 4.71it/s]
641
  11%|█ | 549/4930 [02:14<15:00, 4.87it/s]
642
  11%|█ | 550/4930 [02:14<13:43, 5.32it/s]
643
  11%|█ | 551/4930 [02:14<15:26, 4.73it/s]
644
  11%|█ | 552/4930 [02:14<15:20, 4.76it/s]
645
  11%|█ | 553/4930 [02:14<16:12, 4.50it/s]
646
  11%|█ | 554/4930 [02:15<15:44, 4.63it/s]
647
  11%|█▏ | 555/4930 [02:15<17:39, 4.13it/s]
648
  11%|█▏ | 556/4930 [02:15<18:00, 4.05it/s]
649
  11%|█▏ | 557/4930 [02:16<18:59, 3.84it/s]
650
  11%|█▏ | 558/4930 [02:16<18:06, 4.02it/s]
651
  11%|█▏ | 559/4930 [02:16<16:37, 4.38it/s]
652
  11%|█▏ | 560/4930 [02:16<18:12, 4.00it/s]
653
  11%|█▏ | 561/4930 [02:16<17:50, 4.08it/s]
654
  11%|█▏ | 562/4930 [02:17<18:25, 3.95it/s]
655
  11%|█▏ | 563/4930 [02:17<17:49, 4.08it/s]
656
  11%|█▏ | 564/4930 [02:17<17:46, 4.09it/s]
657
  11%|█▏ | 565/4930 [02:17<18:39, 3.90it/s]
658
  11%|█▏ | 566/4930 [02:18<18:11, 4.00it/s]
659
  12%|█▏ | 567/4930 [02:18<16:57, 4.29it/s]
660
  12%|█▏ | 568/4930 [02:18<15:45, 4.61it/s]
661
  12%|█▏ | 569/4930 [02:18<17:48, 4.08it/s]
662
  12%|█▏ | 570/4930 [02:19<17:51, 4.07it/s]
663
  12%|█▏ | 571/4930 [02:19<17:07, 4.24it/s]
664
  12%|█▏ | 572/4930 [02:19<15:55, 4.56it/s]
665
  12%|█▏ | 573/4930 [02:19<15:08, 4.80it/s]
666
  12%|█▏ | 574/4930 [02:19<15:34, 4.66it/s]
667
  12%|█▏ | 575/4930 [02:20<14:43, 4.93it/s]
668
  12%|█▏ | 576/4930 [02:20<15:33, 4.66it/s]
669
  12%|█▏ | 577/4930 [02:20<15:42, 4.62it/s]
670
  12%|█▏ | 578/4930 [02:20<15:01, 4.83it/s]
671
  12%|█▏ | 579/4930 [02:20<15:35, 4.65it/s]
672
  12%|█▏ | 580/4930 [02:21<15:35, 4.65it/s]
673
  12%|█▏ | 581/4930 [02:21<15:31, 4.67it/s]
674
  12%|█▏ | 582/4930 [02:21<15:02, 4.82it/s]
675
  12%|█▏ | 583/4930 [02:21<15:29, 4.68it/s]
676
  12%|█▏ | 584/4930 [02:22<15:24, 4.70it/s]
677
  12%|█▏ | 585/4930 [02:22<16:33, 4.37it/s]
678
  12%|█▏ | 586/4930 [02:22<15:56, 4.54it/s]
679
  12%|█▏ | 587/4930 [02:22<15:11, 4.76it/s]
680
  12%|█▏ | 588/4930 [02:22<16:19, 4.43it/s]
681
  12%|█▏ | 589/4930 [02:23<15:40, 4.62it/s]
682
  12%|█▏ | 590/4930 [02:23<15:04, 4.80it/s]
683
  12%|█▏ | 591/4930 [02:23<17:43, 4.08it/s]
684
  12%|█▏ | 592/4930 [02:23<17:00, 4.25it/s]
685
  12%|█▏ | 593/4930 [02:24<22:48, 3.17it/s]
686
  12%|█▏ | 594/4930 [02:24<20:41, 3.49it/s]
687
  12%|█▏ | 595/4930 [02:24<18:06, 3.99it/s]
688
  12%|█▏ | 596/4930 [02:24<16:46, 4.31it/s]
689
  12%|█▏ | 597/4930 [02:25<16:37, 4.35it/s]
690
  12%|█▏ | 598/4930 [02:25<17:55, 4.03it/s]
691
  12%|█▏ | 599/4930 [02:25<18:35, 3.88it/s]
692
  12%|█▏ | 600/4930 [02:26<18:29, 3.90it/s]
693
  12%|█▏ | 601/4930 [02:26<18:05, 3.99it/s]
694
  12%|█▏ | 602/4930 [02:26<17:30, 4.12it/s]
695
  12%|█▏ | 603/4930 [02:26<16:26, 4.39it/s]
696
  12%|█▏ | 604/4930 [02:26<15:31, 4.64it/s]
697
  12%|█▏ | 605/4930 [02:27<15:01, 4.80it/s]
698
  12%|█▏ | 606/4930 [02:27<16:20, 4.41it/s]
699
  12%|█▏ | 607/4930 [02:27<16:22, 4.40it/s]
700
  12%|█▏ | 608/4930 [02:27<17:13, 4.18it/s]
701
  12%|█▏ | 609/4930 [02:27<15:45, 4.57it/s]
702
  12%|█▏ | 610/4930 [02:28<15:39, 4.60it/s]
703
  12%|█▏ | 611/4930 [02:28<14:55, 4.82it/s]
704
  12%|█▏ | 612/4930 [02:28<15:45, 4.57it/s]
705
  12%|█▏ | 613/4930 [02:28<15:25, 4.67it/s]
706
  12%|█▏ | 614/4930 [02:29<14:31, 4.95it/s]
707
  12%|█▏ | 615/4930 [02:29<14:36, 4.92it/s]
708
  12%|█▏ | 616/4930 [02:29<15:15, 4.71it/s]
709
  13%|█▎ | 617/4930 [02:29<14:03, 5.11it/s]
710
  13%|█▎ | 618/4930 [02:29<14:44, 4.87it/s]
711
  13%|█▎ | 619/4930 [02:30<16:28, 4.36it/s]
712
  13%|█▎ | 620/4930 [02:30<15:24, 4.66it/s]
713
  13%|█▎ | 621/4930 [02:30<15:05, 4.76it/s]
714
  13%|█▎ | 622/4930 [02:30<16:25, 4.37it/s]
715
  13%|█▎ | 623/4930 [02:31<16:38, 4.31it/s]
716
  13%|█▎ | 624/4930 [02:31<15:43, 4.57it/s]
717
  13%|█▎ | 625/4930 [02:31<17:01, 4.21it/s]
718
  13%|█▎ | 626/4930 [02:31<16:20, 4.39it/s]
719
  13%|█▎ | 627/4930 [02:31<16:47, 4.27it/s]
720
  13%|█▎ | 628/4930 [02:32<17:00, 4.22it/s]
721
  13%|█▎ | 629/4930 [02:32<17:46, 4.03it/s]
722
  13%|█▎ | 630/4930 [02:32<16:38, 4.31it/s]
723
  13%|█▎ | 631/4930 [02:32<15:49, 4.53it/s]
724
  13%|█▎ | 632/4930 [02:33<15:07, 4.74it/s]
725
  13%|█▎ | 633/4930 [02:33<17:24, 4.11it/s]
726
  13%|█▎ | 634/4930 [02:33<17:04, 4.19it/s]
727
  13%|█▎ | 635/4930 [02:33<18:05, 3.96it/s]
728
  13%|█▎ | 636/4930 [02:34<17:13, 4.15it/s]
729
  13%|█▎ | 637/4930 [02:34<15:27, 4.63it/s]
730
  13%|█▎ | 638/4930 [02:34<16:50, 4.25it/s]
731
  13%|█▎ | 639/4930 [02:34<15:52, 4.50it/s]
732
  13%|█▎ | 640/4930 [02:34<15:21, 4.66it/s]
733
  13%|█▎ | 641/4930 [02:35<15:25, 4.64it/s]
734
  13%|█▎ | 642/4930 [02:35<15:46, 4.53it/s]
735
  13%|█▎ | 643/4930 [02:35<15:43, 4.55it/s]
736
  13%|█▎ | 644/4930 [02:35<14:10, 5.04it/s]
737
  13%|█▎ | 645/4930 [02:35<14:51, 4.80it/s]
738
  13%|█▎ | 646/4930 [02:36<15:44, 4.54it/s]
739
  13%|█▎ | 647/4930 [02:36<15:11, 4.70it/s]
740
  13%|█▎ | 648/4930 [02:36<16:50, 4.24it/s]
741
  13%|█▎ | 649/4930 [02:36<17:13, 4.14it/s]
742
  13%|█▎ | 650/4930 [02:37<16:35, 4.30it/s]
743
  13%|█▎ | 651/4930 [02:37<16:04, 4.44it/s]
744
  13%|█▎ | 652/4930 [02:37<15:55, 4.48it/s]
745
  13%|█▎ | 653/4930 [02:37<14:40, 4.86it/s]
746
  13%|█▎ | 654/4930 [02:37<14:10, 5.03it/s]
747
  13%|█▎ | 655/4930 [02:38<14:21, 4.96it/s]
748
  13%|█▎ | 656/4930 [02:38<14:37, 4.87it/s]
749
  13%|█▎ | 657/4930 [02:38<15:38, 4.55it/s]
750
  13%|█▎ | 658/4930 [02:38<14:58, 4.76it/s]
751
  13%|█▎ | 659/4930 [02:38<14:19, 4.97it/s]
752
  13%|█▎ | 660/4930 [02:39<16:15, 4.38it/s]
753
  13%|█▎ | 661/4930 [02:39<16:16, 4.37it/s]
754
  13%|█▎ | 662/4930 [02:39<15:24, 4.62it/s]
755
  13%|█▎ | 663/4930 [02:39<16:04, 4.42it/s]
756
  13%|█▎ | 664/4930 [02:40<16:12, 4.39it/s]
757
  13%|█▎ | 665/4930 [02:40<17:39, 4.03it/s]
758
  14%|█▎ | 666/4930 [02:40<15:44, 4.51it/s]
759
  14%|█▎ | 667/4930 [02:40<15:26, 4.60it/s]
760
  14%|█▎ | 668/4930 [02:41<14:58, 4.74it/s]
761
  14%|█▎ | 669/4930 [02:41<15:29, 4.59it/s]
762
  14%|█▎ | 670/4930 [02:41<16:01, 4.43it/s]
763
  14%|█▎ | 671/4930 [02:41<15:43, 4.52it/s]
764
  14%|█▎ | 672/4930 [02:41<15:11, 4.67it/s]
765
  14%|█▎ | 673/4930 [02:42<13:50, 5.12it/s]
766
  14%|█▎ | 674/4930 [02:42<14:52, 4.77it/s]
767
  14%|█▎ | 675/4930 [02:42<14:57, 4.74it/s]
768
  14%|█▎ | 676/4930 [02:42<13:35, 5.22it/s]
769
  14%|█▎ | 677/4930 [02:42<15:21, 4.62it/s]
770
  14%|█▍ | 678/4930 [02:43<14:42, 4.82it/s]
771
  14%|█▍ | 679/4930 [02:43<15:26, 4.59it/s]
772
  14%|█▍ | 680/4930 [02:43<14:14, 4.97it/s]
773
  14%|█▍ | 681/4930 [02:43<15:17, 4.63it/s]
774
  14%|█▍ | 682/4930 [02:43<14:50, 4.77it/s]
775
  14%|█▍ | 683/4930 [02:44<14:24, 4.91it/s]
776
  14%|█▍ | 684/4930 [02:44<14:33, 4.86it/s]
777
  14%|█▍ | 685/4930 [02:44<14:50, 4.77it/s]
778
  14%|█▍ | 686/4930 [02:44<14:52, 4.76it/s]
779
  14%|█▍ | 687/4930 [02:44<14:04, 5.02it/s]
780
  14%|█▍ | 688/4930 [02:45<15:34, 4.54it/s]
781
  14%|█▍ | 689/4930 [02:45<16:22, 4.32it/s]
782
  14%|█▍ | 690/4930 [02:45<15:01, 4.70it/s]
783
  14%|█▍ | 691/4930 [02:45<14:10, 4.99it/s]
784
  14%|█▍ | 692/4930 [02:46<13:18, 5.31it/s]
785
  14%|█▍ | 693/4930 [02:46<12:51, 5.49it/s]
786
  14%|█▍ | 694/4930 [02:46<13:48, 5.11it/s]
787
  14%|█▍ | 695/4930 [02:46<14:12, 4.97it/s]
788
  14%|█▍ | 696/4930 [02:46<13:57, 5.06it/s]
789
  14%|█▍ | 697/4930 [02:46<13:50, 5.10it/s]
790
  14%|█▍ | 698/4930 [02:47<13:22, 5.28it/s]
791
  14%|█▍ | 699/4930 [02:47<13:59, 5.04it/s]
792
  14%|█▍ | 700/4930 [02:47<13:57, 5.05it/s]
793
  14%|█▍ | 701/4930 [02:47<14:25, 4.89it/s]
794
  14%|█▍ | 702/4930 [02:48<16:00, 4.40it/s]
795
  14%|█▍ | 703/4930 [02:48<16:39, 4.23it/s]
796
  14%|█▍ | 704/4930 [02:48<15:44, 4.47it/s]
797
  14%|█▍ | 705/4930 [02:48<17:29, 4.03it/s]
798
  14%|█▍ | 706/4930 [02:49<15:59, 4.40it/s]
799
  14%|█▍ | 707/4930 [02:49<14:21, 4.90it/s]
800
  14%|█▍ | 708/4930 [02:49<14:51, 4.73it/s]
801
  14%|█▍ | 709/4930 [02:49<14:56, 4.71it/s]
802
  14%|█▍ | 710/4930 [02:49<14:50, 4.74it/s]
803
  14%|█▍ | 711/4930 [02:50<14:40, 4.79it/s]
804
  14%|█▍ | 712/4930 [02:50<16:01, 4.39it/s]
805
  14%|█▍ | 713/4930 [02:50<15:18, 4.59it/s]
806
  14%|█▍ | 714/4930 [02:50<14:29, 4.85it/s]
807
  15%|█▍ | 715/4930 [02:50<13:56, 5.04it/s]
808
  15%|█▍ | 716/4930 [02:51<14:37, 4.80it/s]
809
  15%|█▍ | 717/4930 [02:51<15:11, 4.62it/s]
810
  15%|█▍ | 718/4930 [02:51<15:50, 4.43it/s]
811
  15%|█▍ | 719/4930 [02:51<16:18, 4.30it/s]
812
  15%|█▍ | 720/4930 [02:52<15:44, 4.46it/s]
813
  15%|█▍ | 721/4930 [02:52<15:32, 4.51it/s]
814
  15%|█▍ | 722/4930 [02:52<15:24, 4.55it/s]
815
  15%|█▍ | 723/4930 [02:52<16:03, 4.37it/s]
816
  15%|█▍ | 724/4930 [02:52<14:59, 4.67it/s]
817
  15%|█▍ | 725/4930 [02:53<15:41, 4.47it/s]
818
  15%|█▍ | 726/4930 [02:53<18:50, 3.72it/s]
819
  15%|█▍ | 727/4930 [02:53<17:29, 4.00it/s]
820
  15%|█▍ | 728/4930 [02:53<15:35, 4.49it/s]
821
  15%|█▍ | 729/4930 [02:54<15:27, 4.53it/s]
822
  15%|█▍ | 730/4930 [02:54<15:53, 4.41it/s]
823
  15%|█▍ | 731/4930 [02:54<15:52, 4.41it/s]
824
  15%|█▍ | 732/4930 [02:54<16:51, 4.15it/s]
825
  15%|█▍ | 733/4930 [02:55<16:29, 4.24it/s]
826
  15%|█▍ | 734/4930 [02:55<15:32, 4.50it/s]
827
  15%|█▍ | 735/4930 [02:55<14:38, 4.77it/s]
828
  15%|█▍ | 736/4930 [02:55<15:33, 4.49it/s]
829
  15%|█▍ | 737/4930 [02:56<18:00, 3.88it/s]
830
  15%|█▍ | 738/4930 [02:56<16:41, 4.18it/s]
831
  15%|█▍ | 739/4930 [02:56<15:23, 4.54it/s]
832
  15%|█▌ | 740/4930 [02:56<15:28, 4.51it/s]
833
  15%|█▌ | 741/4930 [02:56<14:55, 4.68it/s]
834
  15%|█▌ | 742/4930 [02:57<14:38, 4.77it/s]
835
  15%|█▌ | 743/4930 [02:57<14:54, 4.68it/s]
836
  15%|█▌ | 744/4930 [02:57<14:51, 4.70it/s]
837
  15%|█▌ | 745/4930 [02:57<13:32, 5.15it/s]
838
  15%|█▌ | 746/4930 [02:57<13:15, 5.26it/s]
839
  15%|█▌ | 747/4930 [02:58<14:24, 4.84it/s]
840
  15%|█▌ | 748/4930 [02:58<13:48, 5.05it/s]
841
  15%|█▌ | 749/4930 [02:58<14:32, 4.79it/s]
842
  15%|█▌ | 750/4930 [02:58<14:58, 4.65it/s]
843
  15%|█▌ | 751/4930 [02:58<14:27, 4.82it/s]
844
  15%|█▌ | 752/4930 [02:59<14:48, 4.70it/s]
845
  15%|█▌ | 753/4930 [02:59<13:57, 4.99it/s]
846
  15%|█▌ | 754/4930 [02:59<14:50, 4.69it/s]
847
  15%|█▌ | 755/4930 [02:59<13:55, 5.00it/s]
848
  15%|█▌ | 756/4930 [02:59<13:16, 5.24it/s]
849
  15%|█▌ | 757/4930 [03:00<14:53, 4.67it/s]
850
  15%|█▌ | 758/4930 [03:00<13:58, 4.98it/s]
851
  15%|█▌ | 759/4930 [03:00<14:30, 4.79it/s]
852
  15%|█▌ | 760/4930 [03:00<13:42, 5.07it/s]
853
  15%|█▌ | 761/4930 [03:00<13:21, 5.20it/s]
854
  15%|█▌ | 762/4930 [03:01<13:19, 5.21it/s]
855
  15%|█▌ | 763/4930 [03:01<15:09, 4.58it/s]
856
  15%|█▌ | 764/4930 [03:01<14:40, 4.73it/s]
857
  16%|█▌ | 765/4930 [03:01<14:00, 4.96it/s]
858
  16%|█▌ | 766/4930 [03:01<13:37, 5.09it/s]
859
  16%|█▌ | 767/4930 [03:02<13:59, 4.96it/s]
860
  16%|█▌ | 768/4930 [03:02<13:38, 5.09it/s]
861
  16%|█▌ | 769/4930 [03:02<13:16, 5.22it/s]
862
  16%|█▌ | 770/4930 [03:02<13:23, 5.18it/s]
863
  16%|█▌ | 771/4930 [03:02<13:10, 5.26it/s]
864
  16%|█▌ | 772/4930 [03:03<14:57, 4.63it/s]
865
  16%|█▌ | 773/4930 [03:03<16:11, 4.28it/s]
866
  16%|█▌ | 774/4930 [03:03<16:44, 4.14it/s]
867
  16%|█▌ | 775/4930 [03:03<18:18, 3.78it/s]
868
  16%|█▌ | 776/4930 [03:04<17:16, 4.01it/s]
869
  16%|█▌ | 777/4930 [03:04<17:28, 3.96it/s]
870
  16%|█▌ | 778/4930 [03:04<16:26, 4.21it/s]
871
  16%|█▌ | 779/4930 [03:04<14:59, 4.62it/s]
872
  16%|█▌ | 780/4930 [03:05<15:38, 4.42it/s]
873
  16%|█▌ | 781/4930 [03:05<14:29, 4.77it/s]
874
  16%|█▌ | 782/4930 [03:05<13:56, 4.96it/s]
875
  16%|█▌ | 783/4930 [03:05<13:36, 5.08it/s]
876
  16%|█▌ | 784/4930 [03:05<13:01, 5.30it/s]
877
  16%|█▌ | 785/4930 [03:05<12:32, 5.51it/s]
878
  16%|█▌ | 786/4930 [03:06<12:35, 5.49it/s]
879
  16%|█▌ | 787/4930 [03:06<13:28, 5.12it/s]
880
  16%|█▌ | 788/4930 [03:06<12:57, 5.32it/s]
881
  16%|█▌ | 789/4930 [03:06<11:54, 5.79it/s]
882
  16%|█▌ | 790/4930 [03:06<12:52, 5.36it/s]
883
  16%|█▌ | 791/4930 [03:07<12:59, 5.31it/s]
884
  16%|█▌ | 792/4930 [03:07<13:55, 4.96it/s]
885
  16%|█▌ | 793/4930 [03:07<15:38, 4.41it/s]
886
  16%|█▌ | 794/4930 [03:07<15:32, 4.44it/s]
887
  16%|█▌ | 795/4930 [03:08<15:12, 4.53it/s]
888
  16%|█▌ | 796/4930 [03:08<17:33, 3.93it/s]
889
  16%|█▌ | 797/4930 [03:08<18:42, 3.68it/s]
890
  16%|█▌ | 798/4930 [03:08<16:12, 4.25it/s]
891
  16%|█▌ | 799/4930 [03:08<14:51, 4.63it/s]
892
  16%|█▌ | 800/4930 [03:09<15:04, 4.57it/s]
893
  16%|█▌ | 801/4930 [03:09<15:35, 4.41it/s]
894
  16%|█▋ | 802/4930 [03:09<14:27, 4.76it/s]
895
  16%|█▋ | 803/4930 [03:09<13:50, 4.97it/s]
896
  16%|█▋ | 804/4930 [03:09<13:30, 5.09it/s]
897
  16%|█▋ | 805/4930 [03:10<13:24, 5.13it/s]
898
  16%|█▋ | 806/4930 [03:10<13:42, 5.01it/s]
899
  16%|█▋ | 807/4930 [03:10<14:36, 4.70it/s]
900
  16%|█▋ | 808/4930 [03:10<14:37, 4.70it/s]
901
  16%|█▋ | 809/4930 [03:11<14:30, 4.74it/s]
902
  16%|█▋ | 810/4930 [03:11<14:06, 4.87it/s]
903
  16%|█▋ | 811/4930 [03:11<12:36, 5.45it/s]
904
  16%|█▋ | 812/4930 [03:11<13:41, 5.01it/s]
905
  16%|█▋ | 813/4930 [03:11<14:06, 4.86it/s]
906
  17%|█▋ | 814/4930 [03:12<13:55, 4.93it/s]
907
  17%|█▋ | 815/4930 [03:12<13:48, 4.97it/s]
908
  17%|█▋ | 816/4930 [03:12<14:19, 4.79it/s]
909
  17%|█▋ | 817/4930 [03:12<14:48, 4.63it/s]
910
  17%|█▋ | 818/4930 [03:12<15:47, 4.34it/s]
911
  17%|█▋ | 819/4930 [03:13<14:55, 4.59it/s]
912
  17%|█▋ | 820/4930 [03:13<14:09, 4.84it/s]
913
  17%|█▋ | 821/4930 [03:13<13:52, 4.93it/s]
914
  17%|█▋ | 822/4930 [03:13<13:24, 5.11it/s]
915
  17%|█▋ | 823/4930 [03:13<12:29, 5.48it/s]
916
  17%|█▋ | 824/4930 [03:14<12:50, 5.33it/s]
917
  17%|█▋ | 825/4930 [03:14<12:51, 5.32it/s]
918
  17%|█▋ | 826/4930 [03:14<13:02, 5.24it/s]
919
  17%|█▋ | 827/4930 [03:14<14:00, 4.88it/s]
920
  17%|█▋ | 828/4930 [03:14<14:34, 4.69it/s]
921
  17%|█▋ | 829/4930 [03:15<14:37, 4.67it/s]
922
  17%|█▋ | 830/4930 [03:15<13:33, 5.04it/s]
923
  17%|█▋ | 831/4930 [03:15<14:28, 4.72it/s]
924
  17%|█▋ | 832/4930 [03:15<13:34, 5.03it/s]
925
  17%|█▋ | 833/4930 [03:15<13:34, 5.03it/s]
926
  17%|█▋ | 834/4930 [03:16<13:33, 5.03it/s]
927
  17%|█▋ | 835/4930 [03:16<13:25, 5.08it/s]
928
  17%|█▋ | 836/4930 [03:16<16:35, 4.11it/s]
929
  17%|█▋ | 837/4930 [03:16<15:17, 4.46it/s]
930
  17%|█▋ | 838/4930 [03:17<17:41, 3.85it/s]
931
  17%|█▋ | 839/4930 [03:17<16:51, 4.05it/s]
932
  17%|█▋ | 840/4930 [03:17<17:03, 3.99it/s]
933
  17%|█▋ | 841/4930 [03:17<15:57, 4.27it/s]
934
  17%|█▋ | 842/4930 [03:18<15:15, 4.47it/s]
935
  17%|█▋ | 843/4930 [03:18<14:06, 4.83it/s]
936
  17%|█▋ | 844/4930 [03:18<14:14, 4.78it/s]
937
  17%|█▋ | 845/4930 [03:18<14:20, 4.75it/s]
938
  17%|█▋ | 846/4930 [03:18<14:48, 4.60it/s]
939
  17%|█▋ | 847/4930 [03:19<16:32, 4.11it/s]
940
  17%|█▋ | 848/4930 [03:19<15:11, 4.48it/s]
941
  17%|█▋ | 849/4930 [03:19<15:43, 4.33it/s]
942
  17%|█▋ | 850/4930 [03:19<15:12, 4.47it/s]
943
  17%|█▋ | 851/4930 [03:19<14:30, 4.68it/s]
944
  17%|█▋ | 852/4930 [03:20<13:47, 4.93it/s]
945
  17%|█▋ | 853/4930 [03:20<12:39, 5.37it/s]
946
  17%|█▋ | 854/4930 [03:20<14:01, 4.84it/s]
947
  17%|█▋ | 855/4930 [03:20<13:43, 4.95it/s]
948
  17%|█▋ | 856/4930 [03:20<14:19, 4.74it/s]
949
  17%|█▋ | 857/4930 [03:21<14:09, 4.79it/s]
950
  17%|█▋ | 858/4930 [03:21<13:10, 5.15it/s]
951
  17%|█▋ | 859/4930 [03:21<13:07, 5.17it/s]
952
  17%|█▋ | 860/4930 [03:21<14:11, 4.78it/s]
953
  17%|█▋ | 861/4930 [03:21<13:02, 5.20it/s]
954
  17%|█▋ | 862/4930 [03:22<13:36, 4.98it/s]
955
  18%|█▊ | 863/4930 [03:22<13:22, 5.07it/s]
956
  18%|█▊ | 864/4930 [03:22<13:49, 4.90it/s]
957
  18%|█▊ | 865/4930 [03:22<14:31, 4.67it/s]
958
  18%|█▊ | 866/4930 [03:23<14:42, 4.60it/s]
959
  18%|█▊ | 867/4930 [03:23<14:52, 4.55it/s]
960
  18%|█▊ | 868/4930 [03:23<14:25, 4.69it/s]
961
  18%|█▊ | 869/4930 [03:23<13:00, 5.20it/s]
962
  18%|█▊ | 870/4930 [03:23<12:32, 5.39it/s]
963
  18%|█▊ | 871/4930 [03:23<13:26, 5.03it/s]
964
  18%|█▊ | 872/4930 [03:24<12:41, 5.33it/s]
965
  18%|█▊ | 873/4930 [03:24<12:58, 5.21it/s]
966
  18%|█▊ | 874/4930 [03:24<12:16, 5.50it/s]
967
  18%|█▊ | 875/4930 [03:24<12:25, 5.44it/s]
968
  18%|█▊ | 876/4930 [03:24<13:21, 5.06it/s]
969
  18%|█▊ | 877/4930 [03:25<12:59, 5.20it/s]
970
  18%|█▊ | 878/4930 [03:25<13:38, 4.95it/s]
971
  18%|█▊ | 879/4930 [03:25<12:50, 5.25it/s]
972
  18%|█▊ | 880/4930 [03:25<12:27, 5.42it/s]
973
  18%|█▊ | 881/4930 [03:25<12:43, 5.30it/s]
974
  18%|█▊ | 882/4930 [03:26<14:47, 4.56it/s]
975
  18%|█▊ | 883/4930 [03:26<15:41, 4.30it/s]
976
  18%|█▊ | 884/4930 [03:26<16:55, 3.99it/s]
977
  18%|█▊ | 885/4930 [03:26<16:19, 4.13it/s]
978
  18%|█▊ | 886/4930 [03:27<16:44, 4.02it/s]
979
  18%|█▊ | 887/4930 [03:27<15:45, 4.28it/s]
980
  18%|█▊ | 888/4930 [03:27<14:53, 4.52it/s]
981
  18%|█▊ | 889/4930 [03:27<13:58, 4.82it/s]
982
  18%|█▊ | 890/4930 [03:27<14:17, 4.71it/s]
983
  18%|█▊ | 891/4930 [03:28<13:40, 4.92it/s]
984
  18%|█▊ | 892/4930 [03:28<13:35, 4.95it/s]
985
  18%|█▊ | 893/4930 [03:28<14:26, 4.66it/s]
986
  18%|█▊ | 894/4930 [03:28<15:30, 4.34it/s]
987
  18%|█▊ | 895/4930 [03:29<14:40, 4.58it/s]
988
  18%|█▊ | 896/4930 [03:29<14:11, 4.74it/s]
989
  18%|█▊ | 897/4930 [03:29<14:04, 4.77it/s]
990
  18%|█▊ | 898/4930 [03:29<13:56, 4.82it/s]
991
  18%|█▊ | 899/4930 [03:29<14:09, 4.75it/s]
992
  18%|█▊ | 900/4930 [03:30<15:00, 4.47it/s]
993
  18%|█▊ | 901/4930 [03:30<15:35, 4.31it/s]
994
  18%|█▊ | 902/4930 [03:30<15:25, 4.35it/s]
995
  18%|█▊ | 903/4930 [03:30<14:15, 4.71it/s]
996
  18%|█▊ | 904/4930 [03:30<13:49, 4.86it/s]
997
  18%|█▊ | 905/4930 [03:31<13:41, 4.90it/s]
998
  18%|█▊ | 906/4930 [03:31<14:08, 4.74it/s]
999
  18%|█▊ | 907/4930 [03:31<14:40, 4.57it/s]
1000
  18%|█▊ | 908/4930 [03:31<13:31, 4.96it/s]
1001
  18%|█▊ | 909/4930 [03:31<13:18, 5.03it/s]
1002
  18%|█▊ | 910/4930 [03:32<14:30, 4.62it/s]
1003
  18%|█▊ | 911/4930 [03:32<13:42, 4.89it/s]
1004
  18%|█▊ | 912/4930 [03:32<13:21, 5.01it/s]
1005
  19%|█▊ | 913/4930 [03:32<13:23, 5.00it/s]
1006
  19%|█▊ | 914/4930 [03:33<13:19, 5.02it/s]
1007
  19%|█▊ | 915/4930 [03:33<13:06, 5.10it/s]
1008
  19%|█▊ | 916/4930 [03:33<12:35, 5.32it/s]
1009
  19%|█▊ | 917/4930 [03:33<12:42, 5.26it/s]
1010
  19%|█▊ | 918/4930 [03:33<14:14, 4.69it/s]
1011
  19%|█▊ | 919/4930 [03:34<14:15, 4.69it/s]
1012
  19%|█▊ | 920/4930 [03:34<14:08, 4.72it/s]
1013
  19%|█▊ | 921/4930 [03:34<13:04, 5.11it/s]
1014
  19%|█▊ | 922/4930 [03:34<12:34, 5.31it/s]
1015
  19%|█▊ | 923/4930 [03:34<13:09, 5.08it/s]
1016
  19%|█▊ | 924/4930 [03:34<12:09, 5.49it/s]
1017
  19%|█▉ | 925/4930 [03:35<12:30, 5.33it/s]
1018
  19%|█▉ | 926/4930 [03:35<12:13, 5.46it/s]
1019
  19%|█▉ | 927/4930 [03:35<12:26, 5.36it/s]
1020
  19%|█▉ | 928/4930 [03:35<12:41, 5.26it/s]
1021
  19%|█▉ | 929/4930 [03:35<12:25, 5.37it/s]
1022
  19%|█▉ | 930/4930 [03:36<13:18, 5.01it/s]
1023
  19%|█▉ | 931/4930 [03:36<13:30, 4.94it/s]
1024
  19%|█▉ | 932/4930 [03:36<12:10, 5.47it/s]
1025
  19%|█▉ | 933/4930 [03:36<12:30, 5.32it/s]
1026
  19%|█▉ | 934/4930 [03:36<13:17, 5.01it/s]
1027
  19%|█▉ | 935/4930 [03:37<13:22, 4.98it/s]
1028
  19%|█▉ | 936/4930 [03:37<13:11, 5.05it/s]
1029
  19%|█▉ | 937/4930 [03:37<13:35, 4.89it/s]
1030
  19%|█▉ | 938/4930 [03:37<14:50, 4.48it/s]
1031
  19%|█▉ | 939/4930 [03:37<13:56, 4.77it/s]
1032
  19%|█▉ | 940/4930 [03:38<13:08, 5.06it/s]
1033
  19%|█▉ | 941/4930 [03:38<13:04, 5.08it/s]
1034
  19%|█▉ | 942/4930 [03:38<12:46, 5.20it/s]
1035
  19%|█▉ | 943/4930 [03:38<13:01, 5.10it/s]
1036
  19%|█▉ | 944/4930 [03:38<12:36, 5.27it/s]
1037
  19%|█▉ | 945/4930 [03:39<13:04, 5.08it/s]
1038
  19%|█▉ | 946/4930 [03:39<13:56, 4.76it/s]
1039
  19%|█▉ | 947/4930 [03:39<13:09, 5.04it/s]
1040
  19%|█▉ | 948/4930 [03:39<14:40, 4.52it/s]
1041
  19%|█▉ | 949/4930 [03:40<14:42, 4.51it/s]
1042
  19%|█▉ | 950/4930 [03:40<14:26, 4.59it/s]
1043
  19%|█▉ | 951/4930 [03:40<13:59, 4.74it/s]
1044
  19%|█▉ | 952/4930 [03:40<14:05, 4.70it/s]
1045
  19%|█▉ | 953/4930 [03:40<13:45, 4.82it/s]
1046
  19%|█▉ | 954/4930 [03:41<13:37, 4.87it/s]
1047
  19%|█▉ | 955/4930 [03:41<16:47, 3.94it/s]
1048
  19%|█▉ | 956/4930 [03:41<15:39, 4.23it/s]
1049
  19%|█▉ | 957/4930 [03:41<14:58, 4.42it/s]
1050
  19%|█▉ | 958/4930 [03:41<13:55, 4.75it/s]
1051
  19%|█▉ | 959/4930 [03:42<13:38, 4.85it/s]
1052
  19%|█▉ | 960/4930 [03:42<14:30, 4.56it/s]
1053
  19%|█▉ | 961/4930 [03:42<14:57, 4.42it/s]
1054
  20%|█▉ | 962/4930 [03:42<16:05, 4.11it/s]
1055
  20%|█▉ | 963/4930 [03:43<14:35, 4.53it/s]
1056
  20%|█▉ | 964/4930 [03:43<15:53, 4.16it/s]
1057
  20%|█▉ | 965/4930 [03:43<15:56, 4.15it/s]
1058
  20%|█▉ | 966/4930 [03:43<15:19, 4.31it/s]
1059
  20%|█▉ | 967/4930 [03:44<14:47, 4.46it/s]
1060
  20%|█▉ | 968/4930 [03:44<14:22, 4.60it/s]
1061
  20%|█▉ | 969/4930 [03:44<14:52, 4.44it/s]
1062
  20%|█▉ | 970/4930 [03:44<15:38, 4.22it/s]
1063
  20%|█▉ | 971/4930 [03:45<16:16, 4.06it/s]
1064
  20%|█▉ | 972/4930 [03:45<15:30, 4.25it/s]
1065
  20%|█▉ | 973/4930 [03:45<14:33, 4.53it/s]
1066
  20%|█▉ | 974/4930 [03:45<13:31, 4.88it/s]
1067
  20%|█▉ | 975/4930 [03:45<12:53, 5.12it/s]
1068
  20%|█▉ | 976/4930 [03:45<13:21, 4.93it/s]
1069
  20%|█▉ | 977/4930 [03:46<14:24, 4.57it/s]
1070
  20%|█▉ | 978/4930 [03:46<16:04, 4.10it/s]
1071
  20%|█▉ | 979/4930 [03:46<15:07, 4.35it/s]
1072
  20%|█▉ | 980/4930 [03:46<13:59, 4.71it/s]
1073
  20%|█▉ | 981/4930 [03:47<14:41, 4.48it/s]
1074
  20%|█▉ | 982/4930 [03:47<13:46, 4.78it/s]
1075
  20%|█▉ | 983/4930 [03:47<13:53, 4.74it/s]
1076
  20%|█▉ | 984/4930 [03:47<13:19, 4.94it/s]
1077
  20%|█▉ | 985/4930 [03:48<14:56, 4.40it/s]
1078
  20%|██ | 986/4930 [03:48<14:05, 4.66it/s][INFO|trainer.py:811] 2024-09-05 09:24:42,832 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
 
 
1079
  0%| | 0/869 [00:00<?, ?it/s]
 
1080
  1%|▏ | 11/869 [00:00<00:08, 106.52it/s]
 
1081
  3%|▎ | 22/869 [00:00<00:08, 97.56it/s] 
 
1082
  4%|▎ | 32/869 [00:00<00:08, 95.17it/s]
 
1083
  5%|▍ | 43/869 [00:00<00:08, 97.24it/s]
 
1084
  6%|▌ | 53/869 [00:00<00:08, 97.66it/s]
 
1085
  7%|▋ | 63/869 [00:00<00:08, 94.56it/s]
 
1086
  8%|▊ | 73/869 [00:00<00:08, 95.04it/s]
 
1087
  10%|▉ | 83/869 [00:00<00:08, 95.18it/s]
 
1088
  11%|█ | 93/869 [00:00<00:08, 95.93it/s]
 
1089
  12%|█▏ | 103/869 [00:01<00:07, 96.77it/s]
 
1090
  13%|█▎ | 113/869 [00:01<00:08, 94.06it/s]
 
1091
  14%|█▍ | 123/869 [00:01<00:08, 92.99it/s]
 
1092
  15%|█▌ | 133/869 [00:01<00:07, 93.26it/s]
 
1093
  16%|█▋ | 143/869 [00:01<00:07, 91.71it/s]
 
1094
  18%|█▊ | 153/869 [00:01<00:07, 90.85it/s]
 
1095
  19%|█▉ | 163/869 [00:01<00:07, 91.27it/s]
 
1096
  20%|█▉ | 173/869 [00:01<00:07, 90.71it/s]
 
1097
  21%|██ | 183/869 [00:01<00:07, 91.28it/s]
 
1098
  22%|██▏ | 193/869 [00:02<00:07, 91.06it/s]
 
1099
  23%|██▎ | 203/869 [00:02<00:07, 92.75it/s]
 
1100
  25%|██▍ | 213/869 [00:02<00:07, 93.32it/s]
 
1101
  26%|██▌ | 223/869 [00:02<00:06, 93.38it/s]
 
1102
  27%|██▋ | 233/869 [00:02<00:06, 91.09it/s]
 
1103
  28%|██▊ | 243/869 [00:02<00:07, 87.91it/s]
 
1104
  29%|██▉ | 253/869 [00:02<00:06, 90.52it/s]
 
1105
  30%|███ | 263/869 [00:02<00:06, 92.15it/s]
 
1106
  31%|███▏ | 273/869 [00:02<00:06, 91.45it/s]
 
1107
  33%|███▎ | 283/869 [00:03<00:06, 90.16it/s]
 
1108
  34%|███▎ | 293/869 [00:03<00:06, 91.10it/s]
 
1109
  35%|███▍ | 303/869 [00:03<00:06, 89.95it/s]
 
1110
  36%|███▌ | 313/869 [00:03<00:06, 90.24it/s]
 
1111
  37%|███▋ | 323/869 [00:03<00:06, 89.85it/s]
 
1112
  38%|███▊ | 333/869 [00:03<00:05, 92.32it/s]
 
1113
  39%|███▉ | 343/869 [00:03<00:05, 88.93it/s]
 
1114
  41%|████ | 352/869 [00:03<00:05, 88.63it/s]
 
1115
  42%|████▏ | 362/869 [00:03<00:05, 90.27it/s]
 
1116
  43%|████▎ | 372/869 [00:04<00:05, 90.81it/s]
 
1117
  44%|████▍ | 382/869 [00:04<00:05, 89.44it/s]
 
1118
  45%|████▍ | 391/869 [00:04<00:05, 86.77it/s]
 
1119
  46%|████▌ | 401/869 [00:04<00:05, 89.06it/s]
 
1120
  47%|████▋ | 411/869 [00:04<00:05, 91.46it/s]
 
1121
  48%|████▊ | 421/869 [00:04<00:04, 91.99it/s]
 
1122
  50%|████▉ | 431/869 [00:04<00:04, 94.19it/s]
 
1123
  51%|█████ | 441/869 [00:04<00:04, 91.35it/s]
 
1124
  52%|█████▏ | 451/869 [00:04<00:04, 91.94it/s]
 
1125
  53%|█████▎ | 461/869 [00:05<00:04, 90.91it/s]
 
1126
  54%|█████▍ | 471/869 [00:05<00:04, 93.07it/s]
 
1127
  55%|█████▌ | 481/869 [00:05<00:04, 94.52it/s]
 
1128
  57%|█████▋ | 491/869 [00:05<00:04, 91.18it/s]
 
1129
  58%|█████▊ | 501/869 [00:05<00:04, 91.64it/s]
 
1130
  59%|█████▉ | 511/869 [00:05<00:03, 89.94it/s]
 
1131
  60%|█████▉ | 521/869 [00:05<00:03, 92.20it/s]
 
1132
  61%|██████ | 531/869 [00:05<00:03, 88.44it/s]
 
1133
  62%|██████▏ | 540/869 [00:05<00:03, 87.88it/s]
 
1134
  63%|██████▎ | 550/869 [00:05<00:03, 91.25it/s]
 
1135
  64%|██████▍ | 560/869 [00:06<00:03, 91.98it/s]
 
1136
  66%|██████▌ | 570/869 [00:06<00:03, 92.01it/s]
 
1137
  67%|██████▋ | 580/869 [00:06<00:03, 91.89it/s]
 
1138
  68%|██████▊ | 590/869 [00:06<00:03, 92.24it/s]
 
1139
  69%|██████▉ | 601/869 [00:06<00:02, 94.99it/s]
 
1140
  70%|███████ | 611/869 [00:06<00:02, 93.48it/s]
 
1141
  71%|███████▏ | 621/869 [00:06<00:02, 93.22it/s]
 
1142
  73%|███████▎ | 631/869 [00:06<00:02, 92.67it/s]
 
1143
  74%|███████▍ | 641/869 [00:06<00:02, 91.21it/s]
 
1144
  75%|███████▍ | 651/869 [00:07<00:02, 91.71it/s]
 
1145
  76%|███████▌ | 661/869 [00:07<00:02, 91.18it/s]
 
1146
  77%|███████▋ | 671/869 [00:07<00:02, 93.08it/s]
 
1147
  78%|███████▊ | 681/869 [00:07<00:02, 87.21it/s]
 
1148
  80%|███████▉ | 691/869 [00:07<00:01, 90.56it/s]
 
1149
  81%|████████ | 701/869 [00:07<00:01, 91.69it/s]
 
1150
  82%|████████▏ | 711/869 [00:07<00:01, 91.90it/s]
 
1151
  83%|████████▎ | 721/869 [00:07<00:01, 91.99it/s]
 
1152
  84%|████████▍ | 731/869 [00:07<00:01, 92.01it/s]
 
1153
  85%|████████▌ | 741/869 [00:08<00:01, 90.94it/s]
 
1154
  86%|████████▋ | 751/869 [00:08<00:01, 90.11it/s]
 
1155
  88%|████████▊ | 761/869 [00:08<00:01, 91.32it/s]
 
1156
  89%|████████▊ | 771/869 [00:08<00:01, 89.23it/s]
 
1157
  90%|████████▉ | 780/869 [00:08<00:01, 84.09it/s]
 
1158
  91%|█████████ | 790/869 [00:08<00:00, 87.41it/s]
 
1159
  92%|█████████▏| 800/869 [00:08<00:00, 89.24it/s]
 
1160
  93%|█████████▎| 809/869 [00:08<00:00, 89.42it/s]
 
1161
  94%|█████████▍| 819/869 [00:08<00:00, 90.02it/s]
 
1162
  95%|█████████▌| 829/869 [00:09<00:00, 89.93it/s]
 
1163
  97%|█████████▋| 839/869 [00:09<00:00, 90.80it/s]
 
1164
  98%|█████████▊| 849/869 [00:09<00:00, 93.15it/s]
 
1165
  99%|█████████▉| 859/869 [00:09<00:00, 93.72it/s]
 
1166
 
 
1167
 
1168
  20%|██ | 986/4930 [04:01<14:05, 4.66it/s]
 
 
1169
  [INFO|trainer.py:3503] 2024-09-05 09:24:56,032 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-986
 
 
 
 
 
 
 
1170
  20%|██ | 987/4930 [04:04<5:28:46, 5.00s/it]
1171
  20%|██ | 988/4930 [04:04<3:54:01, 3.56s/it]
1172
  20%|██ | 989/4930 [04:04<2:48:43, 2.57s/it]
1173
  20%|██ | 990/4930 [04:05<2:02:21, 1.86s/it]
1174
  20%|██ | 991/4930 [04:05<1:29:01, 1.36s/it]
1175
  20%|██ | 992/4930 [04:05<1:06:06, 1.01s/it]
1176
  20%|██ | 993/4930 [04:05<50:20, 1.30it/s]
1177
  20%|██ | 994/4930 [04:05<40:45, 1.61it/s]
1178
  20%|██ | 995/4930 [04:06<32:32, 2.02it/s]
1179
  20%|██ | 996/4930 [04:06<25:58, 2.52it/s]
1180
  20%|██ | 997/4930 [04:06<21:45, 3.01it/s]
1181
  20%|██ | 998/4930 [04:06<19:53, 3.29it/s]
1182
  20%|██ | 999/4930 [04:06<18:41, 3.51it/s]
1183
  20%|██ | 1000/4930 [04:07<17:36, 3.72it/s]
1184
 
1185
  20%|██ | 1000/4930 [04:07<17:36, 3.72it/s]
1186
  20%|██ | 1001/4930 [04:07<16:27, 3.98it/s]
1187
  20%|██ | 1002/4930 [04:07<15:21, 4.26it/s]
1188
  20%|██ | 1003/4930 [04:07<14:54, 4.39it/s]
1189
  20%|██ | 1004/4930 [04:08<14:47, 4.42it/s]
1190
  20%|██ | 1005/4930 [04:08<15:23, 4.25it/s]
1191
  20%|██ | 1006/4930 [04:08<14:31, 4.50it/s]
1192
  20%|██ | 1007/4930 [04:08<13:46, 4.75it/s]
1193
  20%|██ | 1008/4930 [04:08<13:10, 4.96it/s]
1194
  20%|██ | 1009/4930 [04:09<13:09, 4.97it/s]
1195
  20%|██ | 1010/4930 [04:09<13:30, 4.84it/s]
1196
  21%|██ | 1011/4930 [04:09<13:02, 5.01it/s]
1197
  21%|██ | 1012/4930 [04:09<13:13, 4.94it/s]
1198
  21%|██ | 1013/4930 [04:09<12:42, 5.14it/s]
1199
  21%|██ | 1014/4930 [04:10<13:08, 4.96it/s]
1200
  21%|██ | 1015/4930 [04:10<13:59, 4.66it/s]
1201
  21%|██ | 1016/4930 [04:10<15:17, 4.26it/s]
1202
  21%|██ | 1017/4930 [04:10<16:39, 3.92it/s]
1203
  21%|██ | 1018/4930 [04:11<15:21, 4.24it/s]
1204
  21%|██ | 1019/4930 [04:11<15:08, 4.30it/s]
1205
  21%|██ | 1020/4930 [04:11<15:30, 4.20it/s]
1206
  21%|██ | 1021/4930 [04:11<15:04, 4.32it/s]
1207
  21%|██ | 1022/4930 [04:11<14:46, 4.41it/s]
1208
  21%|██ | 1023/4930 [04:12<13:30, 4.82it/s]
1209
  21%|██ | 1024/4930 [04:12<13:16, 4.90it/s]
1210
  21%|██ | 1025/4930 [04:12<13:31, 4.81it/s]
1211
  21%|██ | 1026/4930 [04:12<12:34, 5.18it/s]
1212
  21%|██ | 1027/4930 [04:12<12:02, 5.40it/s]
1213
  21%|██ | 1028/4930 [04:13<13:02, 4.99it/s]
1214
  21%|██ | 1029/4930 [04:13<14:08, 4.60it/s]
1215
  21%|██ | 1030/4930 [04:13<13:57, 4.66it/s]
1216
  21%|██ | 1031/4930 [04:13<13:53, 4.68it/s]
1217
  21%|██ | 1032/4930 [04:13<12:53, 5.04it/s]
1218
  21%|██ | 1033/4930 [04:14<13:22, 4.86it/s]
1219
  21%|██ | 1034/4930 [04:14<12:51, 5.05it/s]
1220
  21%|██ | 1035/4930 [04:14<14:24, 4.51it/s]
1221
  21%|██ | 1036/4930 [04:14<15:16, 4.25it/s]
1222
  21%|██ | 1037/4930 [04:15<13:43, 4.73it/s]
1223
  21%|██ | 1038/4930 [04:15<15:57, 4.06it/s]
1224
  21%|██ | 1039/4930 [04:15<15:29, 4.19it/s]
1225
  21%|██ | 1040/4930 [04:15<16:49, 3.85it/s]
1226
  21%|██ | 1041/4930 [04:16<18:38, 3.48it/s]
1227
  21%|██ | 1042/4930 [04:16<20:10, 3.21it/s]
1228
  21%|██ | 1043/4930 [04:16<18:25, 3.52it/s]
1229
  21%|██ | 1044/4930 [04:17<16:44, 3.87it/s]
1230
  21%|██ | 1045/4930 [04:17<15:45, 4.11it/s]
1231
  21%|██ | 1046/4930 [04:17<14:07, 4.59it/s]
1232
  21%|██ | 1047/4930 [04:17<14:32, 4.45it/s]
1233
  21%|██▏ | 1048/4930 [04:17<14:11, 4.56it/s]
1234
  21%|██▏ | 1049/4930 [04:18<13:43, 4.72it/s]
1235
  21%|██▏ | 1050/4930 [04:18<14:26, 4.48it/s]
1236
  21%|██▏ | 1051/4930 [04:18<15:49, 4.09it/s]
1237
  21%|██▏ | 1052/4930 [04:18<16:58, 3.81it/s]
1238
  21%|██▏ | 1053/4930 [04:19<15:44, 4.10it/s]
1239
  21%|██▏ | 1054/4930 [04:19<14:31, 4.45it/s]
1240
  21%|██▏ | 1055/4930 [04:19<14:22, 4.49it/s]
1241
  21%|██▏ | 1056/4930 [04:19<13:29, 4.79it/s]
1242
  21%|██▏ | 1057/4930 [04:19<14:02, 4.60it/s]
1243
  21%|██▏ | 1058/4930 [04:20<13:27, 4.80it/s]
1244
  21%|██▏ | 1059/4930 [04:20<13:52, 4.65it/s]
1245
  22%|██▏ | 1060/4930 [04:20<13:38, 4.73it/s]
1246
  22%|██▏ | 1061/4930 [04:20<13:32, 4.76it/s]
1247
  22%|██▏ | 1062/4930 [04:20<13:04, 4.93it/s]
1248
  22%|██▏ | 1063/4930 [04:21<12:29, 5.16it/s]
1249
  22%|██▏ | 1064/4930 [04:21<12:39, 5.09it/s]
1250
  22%|██▏ | 1065/4930 [04:21<15:37, 4.12it/s]
1251
  22%|██▏ | 1066/4930 [04:21<16:14, 3.97it/s]
1252
  22%|██▏ | 1067/4930 [04:22<16:46, 3.84it/s]
1253
  22%|██▏ | 1068/4930 [04:22<17:57, 3.58it/s]
1254
  22%|██▏ | 1069/4930 [04:22<16:45, 3.84it/s]
1255
  22%|██▏ | 1070/4930 [04:23<17:38, 3.65it/s]
1256
  22%|██▏ | 1071/4930 [04:23<17:03, 3.77it/s]
1257
  22%|██▏ | 1072/4930 [04:23<16:51, 3.81it/s]
1258
  22%|██▏ | 1073/4930 [04:23<15:52, 4.05it/s]
1259
  22%|██▏ | 1074/4930 [04:23<14:54, 4.31it/s]
1260
  22%|██▏ | 1075/4930 [04:24<19:44, 3.26it/s]
1261
  22%|██▏ | 1076/4930 [04:24<17:08, 3.75it/s]
1262
  22%|██▏ | 1077/4930 [04:24<16:55, 3.79it/s]
1263
  22%|██▏ | 1078/4930 [04:25<16:37, 3.86it/s]
1264
  22%|██▏ | 1079/4930 [04:25<15:05, 4.25it/s]
1265
  22%|██▏ | 1080/4930 [04:25<14:09, 4.53it/s]
1266
  22%|██▏ | 1081/4930 [04:25<13:33, 4.73it/s]
1267
  22%|██▏ | 1082/4930 [04:25<13:02, 4.92it/s]
1268
  22%|██▏ | 1083/4930 [04:26<12:58, 4.94it/s]
1269
  22%|██▏ | 1084/4930 [04:26<12:21, 5.19it/s]
1270
  22%|██▏ | 1085/4930 [04:26<12:53, 4.97it/s]
1271
  22%|██▏ | 1086/4930 [04:26<14:28, 4.43it/s]
1272
  22%|██▏ | 1087/4930 [04:26<12:55, 4.95it/s]
1273
  22%|██▏ | 1088/4930 [04:27<12:50, 4.99it/s]
1274
  22%|██▏ | 1089/4930 [04:27<13:37, 4.70it/s]
1275
  22%|██▏ | 1090/4930 [04:27<13:45, 4.65it/s]
1276
  22%|██▏ | 1091/4930 [04:27<12:58, 4.93it/s]
1277
  22%|██▏ | 1092/4930 [04:27<12:39, 5.06it/s]
1278
  22%|██▏ | 1093/4930 [04:28<12:27, 5.13it/s]
1279
  22%|██▏ | 1094/4930 [04:28<12:13, 5.23it/s]
1280
  22%|██▏ | 1095/4930 [04:28<13:05, 4.88it/s]
1281
  22%|██▏ | 1096/4930 [04:28<12:14, 5.22it/s]
1282
  22%|██▏ | 1097/4930 [04:28<13:05, 4.88it/s]
1283
  22%|██▏ | 1098/4930 [04:29<13:24, 4.76it/s]
1284
  22%|██▏ | 1099/4930 [04:29<11:51, 5.39it/s]
1285
  22%|██▏ | 1100/4930 [04:29<12:06, 5.28it/s]
1286
  22%|██▏ | 1101/4930 [04:29<12:38, 5.05it/s]
1287
  22%|██▏ | 1102/4930 [04:29<12:53, 4.95it/s]
1288
  22%|██▏ | 1103/4930 [04:30<14:12, 4.49it/s]
1289
  22%|██▏ | 1104/4930 [04:30<13:44, 4.64it/s]
1290
  22%|██▏ | 1105/4930 [04:30<15:35, 4.09it/s]
1291
  22%|██▏ | 1106/4930 [04:30<14:36, 4.36it/s]
1292
  22%|██▏ | 1107/4930 [04:30<13:16, 4.80it/s]
1293
  22%|██▏ | 1108/4930 [04:31<13:00, 4.90it/s]
1294
  22%|██▏ | 1109/4930 [04:31<12:48, 4.97it/s]
1295
  23%|██▎ | 1110/4930 [04:31<14:17, 4.45it/s]
1296
  23%|██▎ | 1111/4930 [04:31<13:07, 4.85it/s]
1297
  23%|██▎ | 1112/4930 [04:32<13:40, 4.65it/s]
1298
  23%|██▎ | 1113/4930 [04:32<13:27, 4.73it/s]
1299
  23%|██▎ | 1114/4930 [04:32<15:15, 4.17it/s]
1300
  23%|██▎ | 1115/4930 [04:32<13:47, 4.61it/s]
1301
  23%|██▎ | 1116/4930 [04:32<13:23, 4.75it/s]
1302
  23%|██▎ | 1117/4930 [04:33<13:20, 4.77it/s]
1303
  23%|██▎ | 1118/4930 [04:33<13:29, 4.71it/s]
1304
  23%|██▎ | 1119/4930 [04:33<13:02, 4.87it/s]
1305
  23%|██▎ | 1120/4930 [04:33<13:50, 4.59it/s]
1306
  23%|██▎ | 1121/4930 [04:34<16:34, 3.83it/s]
1307
  23%|██▎ | 1122/4930 [04:34<14:30, 4.38it/s]
1308
  23%|██▎ | 1123/4930 [04:34<13:18, 4.77it/s]
1309
  23%|██▎ | 1124/4930 [04:34<14:32, 4.36it/s]
1310
  23%|██▎ | 1125/4930 [04:35<17:48, 3.56it/s]
1311
  23%|██▎ | 1126/4930 [04:35<17:11, 3.69it/s]
 
1
+ 2024-09-05 09:20:26.769117: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-09-05 09:20:26.787235: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-09-05 09:20:26.808505: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
4
+ 2024-09-05 09:20:26.814951: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-09-05 09:20:26.830934: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-09-05 09:20:28.127288: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
9
+ warnings.warn(
10
+ 09/05/2024 09:20:29 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 09/05/2024 09:20:29 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ batch_eval_metrics=False,
20
+ bf16=False,
21
+ bf16_full_eval=False,
22
+ data_seed=None,
23
+ dataloader_drop_last=False,
24
+ dataloader_num_workers=0,
25
+ dataloader_persistent_workers=False,
26
+ dataloader_pin_memory=True,
27
+ dataloader_prefetch_factor=None,
28
+ ddp_backend=None,
29
+ ddp_broadcast_buffers=None,
30
+ ddp_bucket_cap_mb=None,
31
+ ddp_find_unused_parameters=None,
32
+ ddp_timeout=1800,
33
+ debug=[],
34
+ deepspeed=None,
35
+ disable_tqdm=False,
36
+ dispatch_batches=None,
37
+ do_eval=True,
38
+ do_predict=True,
39
+ do_train=True,
40
+ eval_accumulation_steps=None,
41
+ eval_delay=0,
42
+ eval_do_concat_batches=True,
43
+ eval_on_start=False,
44
+ eval_steps=None,
45
+ eval_strategy=epoch,
46
+ eval_use_gather_object=False,
47
+ evaluation_strategy=epoch,
48
+ fp16=False,
49
+ fp16_backend=auto,
50
+ fp16_full_eval=False,
51
+ fp16_opt_level=O1,
52
+ fsdp=[],
53
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
54
+ fsdp_min_num_params=0,
55
+ fsdp_transformer_layer_cls_to_wrap=None,
56
+ full_determinism=False,
57
+ gradient_accumulation_steps=2,
58
+ gradient_checkpointing=False,
59
+ gradient_checkpointing_kwargs=None,
60
+ greater_is_better=True,
61
+ group_by_length=False,
62
+ half_precision_backend=auto,
63
+ hub_always_push=False,
64
+ hub_model_id=None,
65
+ hub_private_repo=False,
66
+ hub_strategy=every_save,
67
+ hub_token=<HUB_TOKEN>,
68
+ ignore_data_skip=False,
69
+ include_inputs_for_metrics=False,
70
+ include_num_input_tokens_seen=False,
71
+ include_tokens_per_second=False,
72
+ jit_mode_eval=False,
73
+ label_names=None,
74
+ label_smoothing_factor=0.0,
75
+ learning_rate=5e-05,
76
+ length_column_name=length,
77
+ load_best_model_at_end=True,
78
+ local_rank=0,
79
+ log_level=passive,
80
+ log_level_replica=warning,
81
+ log_on_each_node=True,
82
+ logging_dir=/content/dissertation/scripts/ner/output/tb,
83
+ logging_first_step=False,
84
+ logging_nan_inf_filter=True,
85
+ logging_steps=500,
86
+ logging_strategy=steps,
87
+ lr_scheduler_kwargs={},
88
+ lr_scheduler_type=linear,
89
+ max_grad_norm=1.0,
90
+ max_steps=-1,
91
+ metric_for_best_model=f1,
92
+ mp_parameters=,
93
+ neftune_noise_alpha=None,
94
+ no_cuda=False,
95
+ num_train_epochs=10.0,
96
+ optim=adamw_torch,
97
+ optim_args=None,
98
+ optim_target_modules=None,
99
+ output_dir=/content/dissertation/scripts/ner/output,
100
+ overwrite_output_dir=True,
101
+ past_index=-1,
102
+ per_device_eval_batch_size=8,
103
+ per_device_train_batch_size=32,
104
+ prediction_loss_only=False,
105
+ push_to_hub=True,
106
+ push_to_hub_model_id=None,
107
+ push_to_hub_organization=None,
108
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
109
+ ray_scope=last,
110
+ remove_unused_columns=True,
111
+ report_to=['tensorboard'],
112
+ restore_callback_states_from_checkpoint=False,
113
+ resume_from_checkpoint=None,
114
+ run_name=/content/dissertation/scripts/ner/output,
115
+ save_on_each_node=False,
116
+ save_only_model=False,
117
+ save_safetensors=True,
118
+ save_steps=500,
119
+ save_strategy=epoch,
120
+ save_total_limit=None,
121
+ seed=42,
122
+ skip_memory_metrics=True,
123
+ split_batches=None,
124
+ tf32=None,
125
+ torch_compile=False,
126
+ torch_compile_backend=None,
127
+ torch_compile_mode=None,
128
+ torch_empty_cache_steps=None,
129
+ torchdynamo=None,
130
+ tpu_metrics_debug=False,
131
+ tpu_num_cores=None,
132
+ use_cpu=False,
133
+ use_ipex=False,
134
+ use_legacy_prediction_loop=False,
135
+ use_mps_device=False,
136
+ warmup_ratio=0.0,
137
+ warmup_steps=0,
138
+ weight_decay=0.0,
139
+ )
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ [INFO|configuration_utils.py:733] 2024-09-05 09:20:46,434 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/config.json
148
+ [INFO|configuration_utils.py:800] 2024-09-05 09:20:46,437 >> Model config BertConfig {
149
+ "_name_or_path": "michiyasunaga/BioLinkBERT-base",
150
+ "architectures": [
151
+ "BertModel"
152
+ ],
153
+ "attention_probs_dropout_prob": 0.1,
154
+ "classifier_dropout": null,
155
+ "finetuning_task": "ner",
156
+ "gradient_checkpointing": false,
157
+ "hidden_act": "gelu",
158
+ "hidden_dropout_prob": 0.1,
159
+ "hidden_size": 768,
160
+ "id2label": {
161
+ "0": "O",
162
+ "1": "B-FARMACO",
163
+ "2": "I-FARMACO"
164
+ },
165
+ "initializer_range": 0.02,
166
+ "intermediate_size": 3072,
167
+ "label2id": {
168
+ "B-FARMACO": 1,
169
+ "I-FARMACO": 2,
170
+ "O": 0
171
+ },
172
+ "layer_norm_eps": 1e-12,
173
+ "max_position_embeddings": 512,
174
+ "model_type": "bert",
175
+ "num_attention_heads": 12,
176
+ "num_hidden_layers": 12,
177
+ "pad_token_id": 0,
178
+ "position_embedding_type": "absolute",
179
+ "transformers_version": "4.44.2",
180
+ "type_vocab_size": 2,
181
+ "use_cache": true,
182
+ "vocab_size": 28895
183
+ }
184
+
185
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 09:20:46,675 >> loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/vocab.txt
186
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 09:20:46,675 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer.json
187
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 09:20:46,675 >> loading file added_tokens.json from cache at None
188
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 09:20:46,675 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/special_tokens_map.json
189
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 09:20:46,675 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer_config.json
190
+ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
191
+ warnings.warn(
192
+ [INFO|modeling_utils.py:3678] 2024-09-05 09:20:46,972 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/pytorch_model.bin
193
+ [INFO|modeling_utils.py:4497] 2024-09-05 09:20:47,051 >> Some weights of the model checkpoint at michiyasunaga/BioLinkBERT-base were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']
194
+ - This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
195
+ - This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
196
+ [WARNING|modeling_utils.py:4509] 2024-09-05 09:20:47,051 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at michiyasunaga/BioLinkBERT-base and are newly initialized: ['classifier.bias', 'classifier.weight']
197
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
198
+
199
+
200
+
201
+ /content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
202
+ metric = load_metric("seqeval", trust_remote_code=True)
203
+ [INFO|trainer.py:811] 2024-09-05 09:20:54,057 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
204
+ [INFO|trainer.py:2134] 2024-09-05 09:20:54,619 >> ***** Running training *****
205
+ [INFO|trainer.py:2135] 2024-09-05 09:20:54,619 >> Num examples = 31,536
206
+ [INFO|trainer.py:2136] 2024-09-05 09:20:54,619 >> Num Epochs = 10
207
+ [INFO|trainer.py:2137] 2024-09-05 09:20:54,619 >> Instantaneous batch size per device = 32
208
+ [INFO|trainer.py:2140] 2024-09-05 09:20:54,619 >> Total train batch size (w. parallel, distributed & accumulation) = 64
209
+ [INFO|trainer.py:2141] 2024-09-05 09:20:54,619 >> Gradient Accumulation steps = 2
210
+ [INFO|trainer.py:2142] 2024-09-05 09:20:54,619 >> Total optimization steps = 4,930
211
+ [INFO|trainer.py:2143] 2024-09-05 09:20:54,620 >> Number of trainable parameters = 107,644,419
212
+
213
  0%| | 0/4930 [00:00<?, ?it/s]
214
  0%| | 1/4930 [00:00<1:20:19, 1.02it/s]
215
  0%| | 2/4930 [00:01<48:52, 1.68it/s]
216
  0%| | 3/4930 [00:01<32:40, 2.51it/s]
217
  0%| | 4/4930 [00:01<28:21, 2.90it/s]
218
  0%| | 5/4930 [00:01<24:36, 3.34it/s]
219
  0%| | 6/4930 [00:02<25:17, 3.24it/s]
220
  0%| | 7/4930 [00:02<22:14, 3.69it/s]
221
  0%| | 8/4930 [00:02<19:16, 4.26it/s]
222
  0%| | 9/4930 [00:02<17:58, 4.56it/s]
223
  0%| | 10/4930 [00:03<17:58, 4.56it/s]
224
  0%| | 11/4930 [00:03<18:48, 4.36it/s]
225
  0%| | 12/4930 [00:03<18:34, 4.41it/s]
226
  0%| | 13/4930 [00:03<20:28, 4.00it/s]
227
  0%| | 14/4930 [00:04<19:31, 4.19it/s]
228
  0%| | 15/4930 [00:04<18:46, 4.36it/s]
229
  0%| | 16/4930 [00:04<17:36, 4.65it/s]
230
  0%| | 17/4930 [00:04<17:39, 4.64it/s]
231
  0%| | 18/4930 [00:04<17:07, 4.78it/s]
232
  0%| | 19/4930 [00:05<16:38, 4.92it/s]
233
  0%| | 20/4930 [00:05<16:00, 5.11it/s]
234
  0%| | 21/4930 [00:05<16:36, 4.92it/s]
235
  0%| | 22/4930 [00:05<19:56, 4.10it/s]
236
  0%| | 23/4930 [00:05<20:01, 4.08it/s]
237
  0%| | 24/4930 [00:06<20:36, 3.97it/s]
238
  1%| | 25/4930 [00:06<19:04, 4.29it/s]
239
  1%| | 26/4930 [00:06<18:17, 4.47it/s]
240
  1%| | 27/4930 [00:06<17:44, 4.60it/s]
241
  1%| | 28/4930 [00:07<16:34, 4.93it/s]
242
  1%| | 29/4930 [00:07<15:53, 5.14it/s]
243
  1%| | 30/4930 [00:07<15:45, 5.18it/s]
244
  1%| | 31/4930 [00:07<16:38, 4.90it/s]
245
  1%| | 32/4930 [00:07<17:23, 4.69it/s]
246
  1%| | 33/4930 [00:08<17:24, 4.69it/s]
247
  1%| | 34/4930 [00:08<15:59, 5.10it/s]
248
  1%| | 35/4930 [00:08<15:44, 5.18it/s]
249
  1%| | 36/4930 [00:08<15:17, 5.33it/s]
250
  1%| | 37/4930 [00:08<15:33, 5.24it/s]
251
  1%| | 38/4930 [00:08<16:04, 5.07it/s]
252
  1%| | 39/4930 [00:09<15:49, 5.15it/s]
253
  1%| | 40/4930 [00:09<15:11, 5.36it/s]
254
  1%| | 41/4930 [00:09<15:08, 5.38it/s]
255
  1%| | 42/4930 [00:09<15:05, 5.40it/s]
256
  1%| | 43/4930 [00:09<14:39, 5.55it/s]
257
  1%| | 44/4930 [00:10<14:02, 5.80it/s]
258
  1%| | 45/4930 [00:10<15:50, 5.14it/s]
259
  1%| | 46/4930 [00:10<17:29, 4.65it/s]
260
  1%| | 47/4930 [00:10<18:03, 4.51it/s]
261
  1%| | 48/4930 [00:11<19:12, 4.24it/s]
262
  1%| | 49/4930 [00:11<17:50, 4.56it/s]
263
  1%| | 50/4930 [00:11<17:45, 4.58it/s]
264
  1%| | 51/4930 [00:11<17:11, 4.73it/s]
265
  1%| | 52/4930 [00:11<16:51, 4.82it/s]
266
  1%| | 53/4930 [00:12<17:29, 4.65it/s]
267
  1%| | 54/4930 [00:12<16:46, 4.84it/s]
268
  1%| | 55/4930 [00:12<16:10, 5.02it/s]
269
  1%| | 56/4930 [00:12<15:39, 5.19it/s]
270
  1%| | 57/4930 [00:12<15:33, 5.22it/s]
271
  1%| | 58/4930 [00:13<16:09, 5.02it/s]
272
  1%| | 59/4930 [00:13<15:29, 5.24it/s]
273
  1%| | 60/4930 [00:13<16:22, 4.96it/s]
274
  1%| | 61/4930 [00:13<17:17, 4.69it/s]
275
  1%|▏ | 62/4930 [00:13<17:07, 4.74it/s]
276
  1%|▏ | 63/4930 [00:14<16:06, 5.03it/s]
277
  1%|▏ | 64/4930 [00:14<17:20, 4.68it/s]
278
  1%|▏ | 65/4930 [00:14<16:43, 4.85it/s]
279
  1%|▏ | 66/4930 [00:14<15:33, 5.21it/s]
280
  1%|▏ | 67/4930 [00:14<15:25, 5.25it/s]
281
  1%|▏ | 68/4930 [00:15<16:27, 4.92it/s]
282
  1%|▏ | 69/4930 [00:15<15:28, 5.24it/s]
283
  1%|▏ | 70/4930 [00:15<15:35, 5.20it/s]
284
  1%|▏ | 71/4930 [00:15<16:55, 4.78it/s]
285
  1%|▏ | 72/4930 [00:15<15:44, 5.15it/s]
286
  1%|▏ | 73/4930 [00:16<17:05, 4.74it/s]
287
  2%|▏ | 74/4930 [00:16<17:22, 4.66it/s]
288
  2%|▏ | 75/4930 [00:16<17:26, 4.64it/s]
289
  2%|▏ | 76/4930 [00:16<18:14, 4.43it/s]
290
  2%|▏ | 77/4930 [00:16<17:22, 4.66it/s]
291
  2%|▏ | 78/4930 [00:17<18:55, 4.27it/s]
292
  2%|▏ | 79/4930 [00:17<18:44, 4.31it/s]
293
  2%|▏ | 80/4930 [00:17<21:41, 3.73it/s]
294
  2%|▏ | 81/4930 [00:18<21:55, 3.69it/s]
295
  2%|▏ | 82/4930 [00:18<19:07, 4.23it/s]
296
  2%|▏ | 83/4930 [00:18<17:23, 4.64it/s]
297
  2%|▏ | 84/4930 [00:18<16:33, 4.88it/s]
298
  2%|▏ | 85/4930 [00:18<17:08, 4.71it/s]
299
  2%|▏ | 86/4930 [00:19<16:43, 4.83it/s]
300
  2%|▏ | 87/4930 [00:19<15:31, 5.20it/s]
301
  2%|▏ | 88/4930 [00:19<16:57, 4.76it/s]
302
  2%|▏ | 89/4930 [00:19<18:59, 4.25it/s]
303
  2%|▏ | 90/4930 [00:19<19:15, 4.19it/s]
304
  2%|▏ | 91/4930 [00:20<19:09, 4.21it/s]
305
  2%|▏ | 92/4930 [00:20<20:09, 4.00it/s]
306
  2%|▏ | 93/4930 [00:20<21:55, 3.68it/s]
307
  2%|▏ | 94/4930 [00:21<24:03, 3.35it/s]
308
  2%|▏ | 95/4930 [00:21<22:33, 3.57it/s]
309
  2%|▏ | 96/4930 [00:21<20:23, 3.95it/s]
310
  2%|▏ | 97/4930 [00:21<20:50, 3.87it/s]
311
  2%|▏ | 98/4930 [00:22<25:34, 3.15it/s]
312
  2%|▏ | 99/4930 [00:22<24:36, 3.27it/s]
313
  2%|▏ | 100/4930 [00:22<21:37, 3.72it/s]
314
  2%|▏ | 101/4930 [00:22<20:09, 3.99it/s]
315
  2%|▏ | 102/4930 [00:23<19:00, 4.23it/s]
316
  2%|▏ | 103/4930 [00:23<18:20, 4.38it/s]
317
  2%|▏ | 104/4930 [00:23<20:18, 3.96it/s]
318
  2%|▏ | 105/4930 [00:23<19:53, 4.04it/s]
319
  2%|▏ | 106/4930 [00:24<18:27, 4.36it/s]
320
  2%|▏ | 107/4930 [00:24<17:29, 4.60it/s]
321
  2%|▏ | 108/4930 [00:24<15:57, 5.04it/s]
322
  2%|▏ | 109/4930 [00:24<19:28, 4.13it/s]
323
  2%|▏ | 110/4930 [00:25<18:19, 4.38it/s]
324
  2%|▏ | 111/4930 [00:25<19:41, 4.08it/s]
325
  2%|▏ | 112/4930 [00:25<19:12, 4.18it/s]
326
  2%|▏ | 113/4930 [00:25<17:47, 4.51it/s]
327
  2%|▏ | 114/4930 [00:25<17:25, 4.61it/s]
328
  2%|▏ | 115/4930 [00:26<17:13, 4.66it/s]
329
  2%|▏ | 116/4930 [00:26<17:26, 4.60it/s]
330
  2%|▏ | 117/4930 [00:26<16:58, 4.72it/s]
331
  2%|▏ | 118/4930 [00:26<16:42, 4.80it/s]
332
  2%|▏ | 119/4930 [00:26<15:29, 5.18it/s]
333
  2%|▏ | 120/4930 [00:27<17:31, 4.57it/s]
334
  2%|▏ | 121/4930 [00:27<16:51, 4.76it/s]
335
  2%|▏ | 122/4930 [00:27<17:36, 4.55it/s]
336
  2%|▏ | 123/4930 [00:27<16:47, 4.77it/s]
337
  3%|▎ | 124/4930 [00:27<16:01, 5.00it/s]
338
  3%|▎ | 125/4930 [00:28<15:18, 5.23it/s]
339
  3%|▎ | 126/4930 [00:28<15:52, 5.05it/s]
340
  3%|▎ | 127/4930 [00:28<15:13, 5.26it/s]
341
  3%|▎ | 128/4930 [00:28<14:35, 5.48it/s]
342
  3%|▎ | 129/4930 [00:28<14:45, 5.42it/s]
343
  3%|▎ | 130/4930 [00:29<14:24, 5.55it/s]
344
  3%|▎ | 131/4930 [00:29<16:55, 4.73it/s]
345
  3%|▎ | 132/4930 [00:29<16:08, 4.95it/s]
346
  3%|▎ | 133/4930 [00:29<18:32, 4.31it/s]
347
  3%|▎ | 134/4930 [00:29<16:45, 4.77it/s]
348
  3%|▎ | 135/4930 [00:30<17:32, 4.56it/s]
349
  3%|▎ | 136/4930 [00:30<18:54, 4.23it/s]
350
  3%|▎ | 137/4930 [00:30<18:34, 4.30it/s]
351
  3%|▎ | 138/4930 [00:30<16:50, 4.74it/s]
352
  3%|▎ | 139/4930 [00:31<17:08, 4.66it/s]
353
  3%|▎ | 140/4930 [00:31<17:32, 4.55it/s]
354
  3%|▎ | 141/4930 [00:31<19:20, 4.13it/s]
355
  3%|▎ | 142/4930 [00:31<19:48, 4.03it/s]
356
  3%|▎ | 143/4930 [00:32<18:30, 4.31it/s]
357
  3%|▎ | 144/4930 [00:32<17:27, 4.57it/s]
358
  3%|▎ | 145/4930 [00:32<16:30, 4.83it/s]
359
  3%|▎ | 146/4930 [00:32<17:19, 4.60it/s]
360
  3%|▎ | 147/4930 [00:33<19:39, 4.06it/s]
361
  3%|▎ | 148/4930 [00:33<18:16, 4.36it/s]
362
  3%|▎ | 149/4930 [00:33<16:31, 4.82it/s]
363
  3%|▎ | 150/4930 [00:33<18:43, 4.26it/s]
364
  3%|▎ | 151/4930 [00:33<19:40, 4.05it/s]
365
  3%|▎ | 152/4930 [00:34<18:52, 4.22it/s]
366
  3%|▎ | 153/4930 [00:34<18:54, 4.21it/s]
367
  3%|▎ | 154/4930 [00:34<17:31, 4.54it/s]
368
  3%|▎ | 155/4930 [00:34<16:31, 4.81it/s]
369
  3%|▎ | 156/4930 [00:34<16:02, 4.96it/s]
370
  3%|▎ | 157/4930 [00:35<15:51, 5.02it/s]
371
  3%|▎ | 158/4930 [00:35<16:30, 4.82it/s]
372
  3%|▎ | 159/4930 [00:35<15:40, 5.07it/s]
373
  3%|▎ | 160/4930 [00:35<15:49, 5.02it/s]
374
  3%|▎ | 161/4930 [00:35<17:10, 4.63it/s]
375
  3%|▎ | 162/4930 [00:36<16:19, 4.87it/s]
376
  3%|▎ | 163/4930 [00:36<14:57, 5.31it/s]
377
  3%|▎ | 164/4930 [00:36<15:22, 5.16it/s]
378
  3%|▎ | 165/4930 [00:36<15:35, 5.09it/s]
379
  3%|▎ | 166/4930 [00:36<15:44, 5.04it/s]
380
  3%|▎ | 167/4930 [00:37<15:19, 5.18it/s]
381
  3%|▎ | 168/4930 [00:37<17:17, 4.59it/s]
382
  3%|▎ | 169/4930 [00:37<17:02, 4.66it/s]
383
  3%|▎ | 170/4930 [00:37<16:57, 4.68it/s]
384
  3%|▎ | 171/4930 [00:37<15:37, 5.08it/s]
385
  3%|▎ | 172/4930 [00:38<17:06, 4.64it/s]
386
  4%|▎ | 173/4930 [00:38<17:24, 4.55it/s]
387
  4%|▎ | 174/4930 [00:38<16:56, 4.68it/s]
388
  4%|▎ | 175/4930 [00:38<17:25, 4.55it/s]
389
  4%|▎ | 176/4930 [00:39<16:33, 4.79it/s]
390
  4%|▎ | 177/4930 [00:39<18:27, 4.29it/s]
391
  4%|▎ | 178/4930 [00:39<17:24, 4.55it/s]
392
  4%|▎ | 179/4930 [00:39<16:50, 4.70it/s]
393
  4%|▎ | 180/4930 [00:39<17:14, 4.59it/s]
394
  4%|▎ | 181/4930 [00:40<16:23, 4.83it/s]
395
  4%|▎ | 182/4930 [00:40<16:01, 4.94it/s]
396
  4%|▎ | 183/4930 [00:40<17:26, 4.53it/s]
397
  4%|▎ | 184/4930 [00:40<18:12, 4.34it/s]
398
  4%|▍ | 185/4930 [00:41<17:31, 4.51it/s]
399
  4%|▍ | 186/4930 [00:41<16:44, 4.72it/s]
400
  4%|▍ | 187/4930 [00:41<17:06, 4.62it/s]
401
  4%|▍ | 188/4930 [00:41<16:34, 4.77it/s]
402
  4%|▍ | 189/4930 [00:41<16:05, 4.91it/s]
403
  4%|▍ | 190/4930 [00:42<16:20, 4.83it/s]
404
  4%|▍ | 191/4930 [00:42<15:13, 5.19it/s]
405
  4%|▍ | 192/4930 [00:42<16:24, 4.81it/s]
406
  4%|▍ | 193/4930 [00:42<17:06, 4.61it/s]
407
  4%|▍ | 194/4930 [00:42<16:32, 4.77it/s]
408
  4%|▍ | 195/4930 [00:43<16:10, 4.88it/s]
409
  4%|▍ | 196/4930 [00:43<15:53, 4.96it/s]
410
  4%|▍ | 197/4930 [00:43<16:19, 4.83it/s]
411
  4%|▍ | 198/4930 [00:43<16:29, 4.78it/s]
412
  4%|▍ | 199/4930 [00:43<16:14, 4.85it/s]
413
  4%|▍ | 200/4930 [00:44<16:23, 4.81it/s]
414
  4%|▍ | 201/4930 [00:44<16:08, 4.88it/s]
415
  4%|▍ | 202/4930 [00:44<16:31, 4.77it/s]
416
  4%|▍ | 203/4930 [00:44<17:19, 4.55it/s]
417
  4%|▍ | 204/4930 [00:44<16:22, 4.81it/s]
418
  4%|▍ | 205/4930 [00:45<16:20, 4.82it/s]
419
  4%|▍ | 206/4930 [00:45<16:31, 4.77it/s]
420
  4%|▍ | 207/4930 [00:45<15:44, 5.00it/s]
421
  4%|▍ | 208/4930 [00:45<18:07, 4.34it/s]
422
  4%|▍ | 209/4930 [00:46<16:26, 4.79it/s]
423
  4%|▍ | 210/4930 [00:46<16:20, 4.81it/s]
424
  4%|▍ | 211/4930 [00:46<18:59, 4.14it/s]
425
  4%|▍ | 212/4930 [00:46<17:03, 4.61it/s]
426
  4%|▍ | 213/4930 [00:46<17:30, 4.49it/s]
427
  4%|▍ | 214/4930 [00:47<16:41, 4.71it/s]
428
  4%|▍ | 215/4930 [00:47<17:29, 4.49it/s]
429
  4%|▍ | 216/4930 [00:47<16:01, 4.90it/s]
430
  4%|▍ | 217/4930 [00:47<15:51, 4.95it/s]
431
  4%|▍ | 218/4930 [00:47<16:01, 4.90it/s]
432
  4%|▍ | 219/4930 [00:48<17:25, 4.51it/s]
433
  4%|▍ | 220/4930 [00:48<16:12, 4.84it/s]
434
  4%|▍ | 221/4930 [00:48<17:08, 4.58it/s]
435
  5%|▍ | 222/4930 [00:48<16:27, 4.77it/s]
436
  5%|▍ | 223/4930 [00:49<16:04, 4.88it/s]
437
  5%|▍ | 224/4930 [00:49<15:41, 5.00it/s]
438
  5%|▍ | 225/4930 [00:49<15:25, 5.08it/s]
439
  5%|▍ | 226/4930 [00:49<15:24, 5.09it/s]
440
  5%|▍ | 227/4930 [00:49<16:03, 4.88it/s]
441
  5%|▍ | 228/4930 [00:50<16:59, 4.61it/s]
442
  5%|▍ | 229/4930 [00:50<16:20, 4.79it/s]
443
  5%|▍ | 230/4930 [00:50<16:12, 4.83it/s]
444
  5%|▍ | 231/4930 [00:50<17:05, 4.58it/s]
445
  5%|▍ | 232/4930 [00:51<19:36, 3.99it/s]
446
  5%|▍ | 233/4930 [00:51<18:32, 4.22it/s]
447
  5%|▍ | 234/4930 [00:51<17:51, 4.38it/s]
448
  5%|▍ | 235/4930 [00:51<17:57, 4.36it/s]
449
  5%|▍ | 236/4930 [00:51<18:19, 4.27it/s]
450
  5%|▍ | 237/4930 [00:52<18:38, 4.20it/s]
451
  5%|▍ | 238/4930 [00:52<17:38, 4.43it/s]
452
  5%|▍ | 239/4930 [00:52<17:47, 4.39it/s]
453
  5%|▍ | 240/4930 [00:52<17:17, 4.52it/s]
454
  5%|▍ | 241/4930 [00:53<17:12, 4.54it/s]
455
  5%|▍ | 242/4930 [00:53<16:39, 4.69it/s]
456
  5%|▍ | 243/4930 [00:53<16:41, 4.68it/s]
457
  5%|▍ | 244/4930 [00:53<16:10, 4.83it/s]
458
  5%|▍ | 245/4930 [00:53<16:25, 4.75it/s]
459
  5%|▍ | 246/4930 [00:54<15:39, 4.98it/s]
460
  5%|▌ | 247/4930 [00:54<16:58, 4.60it/s]
461
  5%|▌ | 248/4930 [00:54<16:27, 4.74it/s]
462
  5%|▌ | 249/4930 [00:54<15:42, 4.97it/s]
463
  5%|▌ | 250/4930 [00:54<16:18, 4.78it/s]
464
  5%|▌ | 251/4930 [00:55<16:28, 4.73it/s]
465
  5%|▌ | 252/4930 [00:55<15:26, 5.05it/s]
466
  5%|▌ | 253/4930 [00:55<14:37, 5.33it/s]
467
  5%|▌ | 254/4930 [00:55<15:17, 5.10it/s]
468
  5%|▌ | 255/4930 [00:55<14:00, 5.56it/s]
469
  5%|▌ | 256/4930 [00:55<14:32, 5.36it/s]
470
  5%|▌ | 257/4930 [00:56<14:21, 5.42it/s]
471
  5%|▌ | 258/4930 [00:56<14:47, 5.26it/s]
472
  5%|▌ | 259/4930 [00:56<15:16, 5.10it/s]
473
  5%|▌ | 260/4930 [00:56<14:21, 5.42it/s]
474
  5%|▌ | 261/4930 [00:56<14:39, 5.31it/s]
475
  5%|▌ | 262/4930 [00:57<14:41, 5.29it/s]
476
  5%|▌ | 263/4930 [00:57<15:21, 5.06it/s]
477
  5%|▌ | 264/4930 [00:57<16:11, 4.80it/s]
478
  5%|▌ | 265/4930 [00:57<15:36, 4.98it/s]
479
  5%|▌ | 266/4930 [00:57<14:44, 5.28it/s]
480
  5%|▌ | 267/4930 [00:58<14:39, 5.30it/s]
481
  5%|▌ | 268/4930 [00:58<14:55, 5.21it/s]
482
  5%|▌ | 269/4930 [00:58<15:29, 5.02it/s]
483
  5%|▌ | 270/4930 [00:58<17:01, 4.56it/s]
484
  5%|▌ | 271/4930 [00:58<16:31, 4.70it/s]
485
  6%|▌ | 272/4930 [00:59<16:05, 4.83it/s]
486
  6%|▌ | 273/4930 [00:59<17:16, 4.49it/s]
487
  6%|▌ | 274/4930 [00:59<17:10, 4.52it/s]
488
  6%|▌ | 275/4930 [00:59<15:58, 4.85it/s]
489
  6%|▌ | 276/4930 [01:00<15:32, 4.99it/s]
490
  6%|▌ | 277/4930 [01:00<15:31, 5.00it/s]
491
  6%|▌ | 278/4930 [01:00<15:28, 5.01it/s]
492
  6%|▌ | 279/4930 [01:00<16:01, 4.84it/s]
493
  6%|▌ | 280/4930 [01:00<15:04, 5.14it/s]
494
  6%|▌ | 281/4930 [01:01<16:15, 4.77it/s]
495
  6%|▌ | 282/4930 [01:01<17:23, 4.46it/s]
496
  6%|▌ | 283/4930 [01:01<16:03, 4.82it/s]
497
  6%|▌ | 284/4930 [01:01<16:02, 4.83it/s]
498
  6%|▌ | 285/4930 [01:01<16:37, 4.65it/s]
499
  6%|▌ | 286/4930 [01:02<16:21, 4.73it/s]
500
  6%|▌ | 287/4930 [01:02<15:15, 5.07it/s]
501
  6%|▌ | 288/4930 [01:02<14:26, 5.35it/s]
502
  6%|▌ | 289/4930 [01:02<13:41, 5.65it/s]
503
  6%|▌ | 290/4930 [01:02<13:48, 5.60it/s]
504
  6%|▌ | 291/4930 [01:03<14:52, 5.20it/s]
505
  6%|▌ | 292/4930 [01:03<14:26, 5.35it/s]
506
  6%|▌ | 293/4930 [01:03<13:47, 5.60it/s]
507
  6%|▌ | 294/4930 [01:03<13:52, 5.57it/s]
508
  6%|▌ | 295/4930 [01:03<15:00, 5.15it/s]
509
  6%|▌ | 296/4930 [01:04<17:24, 4.44it/s]
510
  6%|▌ | 297/4930 [01:04<18:54, 4.08it/s]
511
  6%|▌ | 298/4930 [01:04<18:24, 4.19it/s]
512
  6%|▌ | 299/4930 [01:04<18:13, 4.24it/s]
513
  6%|▌ | 300/4930 [01:05<18:14, 4.23it/s]
514
  6%|▌ | 301/4930 [01:05<17:28, 4.41it/s]
515
  6%|▌ | 302/4930 [01:05<16:54, 4.56it/s]
516
  6%|▌ | 303/4930 [01:05<15:37, 4.94it/s]
517
  6%|▌ | 304/4930 [01:05<15:03, 5.12it/s]
518
  6%|▌ | 305/4930 [01:05<15:24, 5.00it/s]
519
  6%|▌ | 306/4930 [01:06<15:45, 4.89it/s]
520
  6%|▌ | 307/4930 [01:06<17:42, 4.35it/s]
521
  6%|▌ | 308/4930 [01:06<17:01, 4.53it/s]
522
  6%|▋ | 309/4930 [01:06<17:07, 4.50it/s]
523
  6%|▋ | 310/4930 [01:07<16:29, 4.67it/s]
524
  6%|▋ | 311/4930 [01:07<16:07, 4.77it/s]
525
  6%|▋ | 312/4930 [01:07<15:49, 4.86it/s]
526
  6%|▋ | 313/4930 [01:07<14:33, 5.29it/s]
527
  6%|▋ | 314/4930 [01:07<15:00, 5.13it/s]
528
  6%|▋ | 315/4930 [01:08<14:39, 5.25it/s]
529
  6%|▋ | 316/4930 [01:08<15:47, 4.87it/s]
530
  6%|▋ | 317/4930 [01:08<15:00, 5.12it/s]
531
  6%|▋ | 318/4930 [01:08<15:33, 4.94it/s]
532
  6%|▋ | 319/4930 [01:08<14:27, 5.32it/s]
533
  6%|▋ | 320/4930 [01:09<14:12, 5.41it/s]
534
  7%|▋ | 321/4930 [01:09<16:18, 4.71it/s]
535
  7%|▋ | 322/4930 [01:09<15:17, 5.02it/s]
536
  7%|▋ | 323/4930 [01:09<15:06, 5.08it/s]
537
  7%|▋ | 324/4930 [01:09<14:59, 5.12it/s]
538
  7%|▋ | 325/4930 [01:10<15:17, 5.02it/s]
539
  7%|▋ | 326/4930 [01:10<15:43, 4.88it/s]
540
  7%|▋ | 327/4930 [01:10<16:05, 4.77it/s]
541
  7%|▋ | 328/4930 [01:10<18:01, 4.26it/s]
542
  7%|▋ | 329/4930 [01:10<16:56, 4.53it/s]
543
  7%|▋ | 330/4930 [01:11<17:02, 4.50it/s]
544
  7%|▋ | 331/4930 [01:11<16:05, 4.76it/s]
545
  7%|▋ | 332/4930 [01:11<15:55, 4.81it/s]
546
  7%|▋ | 333/4930 [01:11<15:01, 5.10it/s]
547
  7%|▋ | 334/4930 [01:11<15:06, 5.07it/s]
548
  7%|▋ | 335/4930 [01:12<15:27, 4.95it/s]
549
  7%|▋ | 336/4930 [01:12<15:20, 4.99it/s]
550
  7%|▋ | 337/4930 [01:12<15:58, 4.79it/s]
551
  7%|▋ | 338/4930 [01:12<18:06, 4.23it/s]
552
  7%|▋ | 339/4930 [01:13<17:35, 4.35it/s]
553
  7%|▋ | 340/4930 [01:13<17:55, 4.27it/s]
554
  7%|▋ | 341/4930 [01:13<16:16, 4.70it/s]
555
  7%|▋ | 342/4930 [01:13<16:12, 4.72it/s]
556
  7%|▋ | 343/4930 [01:13<17:05, 4.47it/s]
557
  7%|▋ | 344/4930 [01:14<16:38, 4.59it/s]
558
  7%|▋ | 345/4930 [01:14<15:14, 5.01it/s]
559
  7%|▋ | 346/4930 [01:14<15:33, 4.91it/s]
560
  7%|▋ | 347/4930 [01:14<16:12, 4.71it/s]
561
  7%|▋ | 348/4930 [01:14<16:17, 4.69it/s]
562
  7%|▋ | 349/4930 [01:15<16:18, 4.68it/s]
563
  7%|▋ | 350/4930 [01:15<15:50, 4.82it/s]
564
  7%|▋ | 351/4930 [01:15<14:53, 5.12it/s]
565
  7%|▋ | 352/4930 [01:15<14:46, 5.16it/s]
566
  7%|▋ | 353/4930 [01:15<14:29, 5.27it/s]
567
  7%|▋ | 354/4930 [01:16<13:56, 5.47it/s]
568
  7%|▋ | 355/4930 [01:16<14:31, 5.25it/s]
569
  7%|▋ | 356/4930 [01:16<15:43, 4.85it/s]
570
  7%|▋ | 357/4930 [01:16<15:09, 5.03it/s]
571
  7%|▋ | 358/4930 [01:16<16:19, 4.67it/s]
572
  7%|▋ | 359/4930 [01:17<16:08, 4.72it/s]
573
  7%|▋ | 360/4930 [01:17<15:27, 4.93it/s]
574
  7%|▋ | 361/4930 [01:17<16:27, 4.63it/s]
575
  7%|▋ | 362/4930 [01:17<16:22, 4.65it/s]
576
  7%|▋ | 363/4930 [01:18<15:58, 4.76it/s]
577
  7%|▋ | 364/4930 [01:18<14:51, 5.12it/s]
578
  7%|▋ | 365/4930 [01:18<14:59, 5.08it/s]
579
  7%|▋ | 366/4930 [01:18<13:45, 5.53it/s]
580
  7%|▋ | 367/4930 [01:18<15:20, 4.96it/s]
581
  7%|▋ | 368/4930 [01:19<15:38, 4.86it/s]
582
  7%|▋ | 369/4930 [01:19<14:55, 5.09it/s]
583
  8%|▊ | 370/4930 [01:19<15:58, 4.76it/s]
584
  8%|▊ | 371/4930 [01:19<16:39, 4.56it/s]
585
  8%|▊ | 372/4930 [01:19<15:58, 4.76it/s]
586
  8%|▊ | 373/4930 [01:20<16:19, 4.65it/s]
587
  8%|▊ | 374/4930 [01:20<15:41, 4.84it/s]
588
  8%|▊ | 375/4930 [01:20<15:18, 4.96it/s]
589
  8%|▊ | 376/4930 [01:20<15:24, 4.93it/s]
590
  8%|▊ | 377/4930 [01:20<14:21, 5.28it/s]
591
  8%|▊ | 378/4930 [01:21<14:16, 5.31it/s]
592
  8%|▊ | 379/4930 [01:21<14:43, 5.15it/s]
593
  8%|▊ | 380/4930 [01:21<18:25, 4.11it/s]
594
  8%|▊ | 381/4930 [01:21<17:58, 4.22it/s]
595
  8%|▊ | 382/4930 [01:21<16:51, 4.50it/s]
596
  8%|▊ | 383/4930 [01:22<16:10, 4.68it/s]
597
  8%|▊ | 384/4930 [01:22<19:05, 3.97it/s]
598
  8%|▊ | 385/4930 [01:22<16:39, 4.55it/s]
599
  8%|▊ | 386/4930 [01:22<15:07, 5.01it/s]
600
  8%|▊ | 387/4930 [01:23<15:07, 5.01it/s]
601
  8%|▊ | 388/4930 [01:23<14:38, 5.17it/s]
602
  8%|▊ | 389/4930 [01:23<14:53, 5.08it/s]
603
  8%|▊ | 390/4930 [01:23<15:16, 4.95it/s]
604
  8%|▊ | 391/4930 [01:23<17:21, 4.36it/s]
605
  8%|▊ | 392/4930 [01:24<16:46, 4.51it/s]
606
  8%|▊ | 393/4930 [01:24<16:18, 4.64it/s]
607
  8%|▊ | 394/4930 [01:24<16:42, 4.52it/s]
608
  8%|▊ | 395/4930 [01:24<16:55, 4.46it/s]
609
  8%|▊ | 396/4930 [01:25<17:28, 4.32it/s]
610
  8%|▊ | 397/4930 [01:25<16:29, 4.58it/s]
611
  8%|▊ | 398/4930 [01:25<15:22, 4.91it/s]
612
  8%|▊ | 399/4930 [01:25<17:34, 4.30it/s]
613
  8%|▊ | 400/4930 [01:25<17:47, 4.24it/s]
614
  8%|▊ | 401/4930 [01:26<15:43, 4.80it/s]
615
  8%|▊ | 402/4930 [01:26<15:33, 4.85it/s]
616
  8%|▊ | 403/4930 [01:26<15:58, 4.73it/s]
617
  8%|▊ | 404/4930 [01:26<15:49, 4.76it/s]
618
  8%|▊ | 405/4930 [01:26<15:45, 4.79it/s]
619
  8%|▊ | 406/4930 [01:27<15:02, 5.01it/s]
620
  8%|▊ | 407/4930 [01:27<15:15, 4.94it/s]
621
  8%|▊ | 408/4930 [01:27<14:58, 5.03it/s]
622
  8%|▊ | 409/4930 [01:27<14:35, 5.16it/s]
623
  8%|▊ | 410/4930 [01:27<14:57, 5.04it/s]
624
  8%|▊ | 411/4930 [01:28<14:59, 5.02it/s]
625
  8%|▊ | 412/4930 [01:28<14:45, 5.10it/s]
626
  8%|▊ | 413/4930 [01:28<16:58, 4.44it/s]
627
  8%|▊ | 414/4930 [01:28<16:46, 4.49it/s]
628
  8%|▊ | 415/4930 [01:28<15:29, 4.86it/s]
629
  8%|▊ | 416/4930 [01:29<15:50, 4.75it/s]
630
  8%|▊ | 417/4930 [01:29<16:34, 4.54it/s]
631
  8%|▊ | 418/4930 [01:29<15:53, 4.73it/s]
632
  8%|▊ | 419/4930 [01:29<16:57, 4.43it/s]
633
  9%|▊ | 420/4930 [01:30<15:25, 4.87it/s]
634
  9%|▊ | 421/4930 [01:30<14:48, 5.08it/s]
635
  9%|▊ | 422/4930 [01:30<15:45, 4.77it/s]
636
  9%|▊ | 423/4930 [01:30<18:09, 4.14it/s]
637
  9%|▊ | 424/4930 [01:31<20:33, 3.65it/s]
638
  9%|▊ | 425/4930 [01:31<20:41, 3.63it/s]
639
  9%|▊ | 426/4930 [01:31<18:45, 4.00it/s]
640
  9%|▊ | 427/4930 [01:31<18:02, 4.16it/s]
641
  9%|▊ | 428/4930 [01:31<16:15, 4.62it/s]
642
  9%|▊ | 429/4930 [01:32<16:02, 4.68it/s]
643
  9%|▊ | 430/4930 [01:32<17:15, 4.35it/s]
644
  9%|▊ | 431/4930 [01:32<15:43, 4.77it/s]
645
  9%|▉ | 432/4930 [01:32<15:26, 4.86it/s]
646
  9%|▉ | 433/4930 [01:33<16:07, 4.65it/s]
647
  9%|▉ | 434/4930 [01:33<16:37, 4.51it/s]
648
  9%|▉ | 435/4930 [01:33<15:25, 4.85it/s]
649
  9%|▉ | 436/4930 [01:33<16:35, 4.52it/s]
650
  9%|▉ | 437/4930 [01:33<16:49, 4.45it/s]
651
  9%|▉ | 438/4930 [01:34<16:36, 4.51it/s]
652
  9%|▉ | 439/4930 [01:34<15:15, 4.91it/s]
653
  9%|▉ | 440/4930 [01:34<17:09, 4.36it/s]
654
  9%|▉ | 441/4930 [01:34<18:55, 3.95it/s]
655
  9%|▉ | 442/4930 [01:35<17:50, 4.19it/s]
656
  9%|▉ | 443/4930 [01:35<16:16, 4.60it/s]
657
  9%|▉ | 444/4930 [01:35<15:37, 4.78it/s]
658
  9%|▉ | 445/4930 [01:35<16:22, 4.56it/s]
659
  9%|▉ | 446/4930 [01:35<17:37, 4.24it/s]
660
  9%|▉ | 447/4930 [01:36<16:40, 4.48it/s]
661
  9%|▉ | 448/4930 [01:36<15:54, 4.70it/s]
662
  9%|▉ | 449/4930 [01:36<15:23, 4.85it/s]
663
  9%|▉ | 450/4930 [01:36<17:26, 4.28it/s]
664
  9%|▉ | 451/4930 [01:37<16:05, 4.64it/s]
665
  9%|▉ | 452/4930 [01:37<15:16, 4.88it/s]
666
  9%|▉ | 453/4930 [01:37<16:45, 4.45it/s]
667
  9%|▉ | 454/4930 [01:37<16:10, 4.61it/s]
668
  9%|▉ | 455/4930 [01:37<17:14, 4.33it/s]
669
  9%|▉ | 456/4930 [01:38<16:39, 4.48it/s]
670
  9%|▉ | 457/4930 [01:38<18:56, 3.94it/s]
671
  9%|▉ | 458/4930 [01:38<18:08, 4.11it/s]
672
  9%|▉ | 459/4930 [01:38<18:48, 3.96it/s]
673
  9%|▉ | 460/4930 [01:39<17:42, 4.21it/s]
674
  9%|▉ | 461/4930 [01:39<18:43, 3.98it/s]
675
  9%|▉ | 462/4930 [01:39<17:00, 4.38it/s]
676
  9%|▉ | 463/4930 [01:39<16:23, 4.54it/s]
677
  9%|▉ | 464/4930 [01:39<14:47, 5.03it/s]
678
  9%|▉ | 465/4930 [01:40<17:55, 4.15it/s]
679
  9%|▉ | 466/4930 [01:40<18:11, 4.09it/s]
680
  9%|▉ | 467/4930 [01:40<16:44, 4.44it/s]
681
  9%|▉ | 468/4930 [01:40<15:14, 4.88it/s]
682
  10%|▉ | 469/4930 [01:41<16:52, 4.40it/s]
683
  10%|▉ | 470/4930 [01:41<16:49, 4.42it/s]
684
  10%|▉ | 471/4930 [01:41<15:01, 4.94it/s]
685
  10%|▉ | 472/4930 [01:41<14:32, 5.11it/s]
686
  10%|▉ | 473/4930 [01:41<16:08, 4.60it/s]
687
  10%|▉ | 474/4930 [01:42<15:31, 4.79it/s]
688
  10%|▉ | 475/4930 [01:42<15:23, 4.82it/s]
689
  10%|▉ | 476/4930 [01:42<15:57, 4.65it/s]
690
  10%|▉ | 477/4930 [01:42<16:32, 4.48it/s]
691
  10%|▉ | 478/4930 [01:43<16:11, 4.58it/s]
692
  10%|▉ | 479/4930 [01:43<15:54, 4.66it/s]
693
  10%|▉ | 480/4930 [01:43<14:28, 5.12it/s]
694
  10%|▉ | 481/4930 [01:43<16:18, 4.55it/s]
695
  10%|▉ | 482/4930 [01:43<16:06, 4.60it/s]
696
  10%|▉ | 483/4930 [01:44<16:41, 4.44it/s]
697
  10%|▉ | 484/4930 [01:44<19:15, 3.85it/s]
698
  10%|▉ | 485/4930 [01:44<18:48, 3.94it/s]
699
  10%|▉ | 486/4930 [01:44<16:13, 4.56it/s]
700
  10%|▉ | 487/4930 [01:45<16:30, 4.49it/s]
701
  10%|▉ | 488/4930 [01:45<14:39, 5.05it/s]
702
  10%|▉ | 489/4930 [01:45<15:58, 4.63it/s]
703
  10%|▉ | 490/4930 [01:45<16:12, 4.57it/s]
704
  10%|▉ | 491/4930 [01:45<15:34, 4.75it/s]
705
  10%|▉ | 492/4930 [01:46<15:09, 4.88it/s]
706
  10%|█ | 493/4930 [01:46<14:25, 5.13it/s][INFO|trainer.py:811] 2024-09-05 09:22:40,903 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
707
+ [INFO|trainer.py:3819] 2024-09-05 09:22:40,906 >>
708
+ ***** Running Evaluation *****
709
+ [INFO|trainer.py:3821] 2024-09-05 09:22:40,906 >> Num examples = 6946
710
+ [INFO|trainer.py:3824] 2024-09-05 09:22:40,906 >> Batch size = 8
711
+
712
+
713
  0%| | 0/869 [00:00<?, ?it/s]
714
+
715
  1%|▏ | 11/869 [00:00<00:08, 103.25it/s]
716
+
717
  3%|▎ | 22/869 [00:00<00:08, 94.51it/s] 
718
+
719
  4%|▎ | 32/869 [00:00<00:09, 92.15it/s]
720
+
721
  5%|▍ | 42/869 [00:00<00:08, 94.01it/s]
722
+
723
  6%|▌ | 52/869 [00:00<00:08, 94.91it/s]
724
+
725
  7%|▋ | 62/869 [00:00<00:08, 93.97it/s]
726
+
727
  8%|▊ | 72/869 [00:00<00:08, 92.79it/s]
728
+
729
  10%|▉ | 83/869 [00:00<00:08, 95.53it/s]
730
+
731
  11%|█ | 94/869 [00:00<00:07, 97.60it/s]
732
+
733
  12%|█▏ | 105/869 [00:01<00:07, 98.01it/s]
734
+
735
  13%|█▎ | 115/869 [00:01<00:07, 96.90it/s]
736
+
737
  14%|█▍ | 125/869 [00:01<00:07, 96.16it/s]
738
+
739
  16%|█▌ | 135/869 [00:01<00:07, 95.51it/s]
740
+
741
  17%|█▋ | 145/869 [00:01<00:07, 91.56it/s]
742
+
743
  18%|█▊ | 155/869 [00:01<00:07, 90.74it/s]
744
+
745
  19%|█▉ | 165/869 [00:01<00:07, 90.55it/s]
746
+
747
  20%|██ | 175/869 [00:01<00:07, 91.19it/s]
748
+
749
  21%|██▏ | 185/869 [00:01<00:07, 91.19it/s]
750
+
751
  22%|██▏ | 195/869 [00:02<00:07, 91.09it/s]
752
+
753
  24%|██▎ | 205/869 [00:02<00:07, 92.13it/s]
754
+
755
  25%|██▍ | 215/869 [00:02<00:06, 93.48it/s]
756
+
757
  26%|██▌ | 225/869 [00:02<00:06, 93.18it/s]
758
+
759
  27%|██▋ | 235/869 [00:02<00:07, 89.87it/s]
760
+
761
  28%|██▊ | 245/869 [00:02<00:07, 87.95it/s]
762
+
763
  29%|██▉ | 255/869 [00:02<00:06, 90.95it/s]
764
+
765
  30%|███ | 265/869 [00:02<00:06, 91.17it/s]
766
+
767
  32%|███▏ | 275/869 [00:02<00:06, 91.19it/s]
768
+
769
  33%|███▎ | 285/869 [00:03<00:06, 90.28it/s]
770
+
771
  34%|███▍ | 295/869 [00:03<00:06, 90.15it/s]
772
+
773
  35%|███▌ | 305/869 [00:03<00:06, 89.02it/s]
774
+
775
  36%|███▌ | 314/869 [00:03<00:06, 87.96it/s]
776
+
777
  37%|███▋ | 323/869 [00:03<00:06, 88.23it/s]
778
+
779
  38%|███▊ | 333/869 [00:03<00:05, 91.27it/s]
780
+
781
  39%|███▉ | 343/869 [00:03<00:05, 89.43it/s]
782
+
783
  41%|████ | 353/869 [00:03<00:05, 90.77it/s]
784
+
785
  42%|████▏ | 364/869 [00:03<00:05, 93.69it/s]
786
+
787
  43%|████▎ | 374/869 [00:04<00:05, 91.84it/s]
788
+
789
  44%|████▍ | 384/869 [00:04<00:05, 92.74it/s]
790
+
791
  45%|████▌ | 394/869 [00:04<00:05, 91.24it/s]
792
+
793
  46%|████▋ | 404/869 [00:04<00:05, 91.96it/s]
794
+
795
  48%|████▊ | 415/869 [00:04<00:04, 94.67it/s]
796
+
797
  49%|████▉ | 425/869 [00:04<00:04, 95.44it/s]
798
+
799
  50%|█████ | 435/869 [00:04<00:04, 94.99it/s]
800
+
801
  51%|█████ | 445/869 [00:04<00:04, 91.28it/s]
802
+
803
  52%|█████▏ | 455/869 [00:04<00:04, 92.99it/s]
804
+
805
  54%|█████▎ | 465/869 [00:05<00:04, 92.53it/s]
806
+
807
  55%|█████▍ | 476/869 [00:05<00:04, 94.96it/s]
808
+
809
  56%|█████▌ | 486/869 [00:05<00:04, 95.18it/s]
810
+
811
  57%|█████▋ | 496/869 [00:05<00:04, 92.41it/s]
812
+
813
  58%|█████▊ | 506/869 [00:05<00:03, 91.71it/s]
814
+
815
  59%|█████▉ | 516/869 [00:05<00:03, 93.31it/s]
816
+
817
  61%|██████ | 526/869 [00:05<00:03, 90.17it/s]
818
+
819
  62%|██████▏ | 536/869 [00:05<00:03, 91.18it/s]
820
+
821
  63%|██████▎ | 546/869 [00:05<00:03, 90.09it/s]
822
+
823
  64%|██████▍ | 556/869 [00:06<00:03, 91.46it/s]
824
+
825
  65%|██████▌ | 566/869 [00:06<00:03, 91.45it/s]
826
+
827
  66%|██████▋ | 576/869 [00:06<00:03, 90.59it/s]
828
+
829
  67%|██████▋ | 586/869 [00:06<00:03, 89.70it/s]
830
+
831
  69%|██████▊ | 596/869 [00:06<00:02, 91.08it/s]
832
+
833
  70%|██████▉ | 606/869 [00:06<00:02, 92.81it/s]
834
+
835
  71%|███████ | 616/869 [00:06<00:02, 92.49it/s]
836
+
837
  72%|███████▏ | 626/869 [00:06<00:02, 93.28it/s]
838
+
839
  73%|███████▎ | 636/869 [00:06<00:02, 90.97it/s]
840
+
841
  74%|███████▍ | 646/869 [00:07<00:02, 91.79it/s]
842
+
843
  75%|███████▌ | 656/869 [00:07<00:02, 93.04it/s]
844
+
845
  77%|███████▋ | 666/869 [00:07<00:02, 92.60it/s]
846
+
847
  78%|███████▊ | 676/869 [00:07<00:02, 93.70it/s]
848
+
849
  79%|███████▉ | 686/869 [00:07<00:02, 86.84it/s]
850
+
851
  80%|████████ | 696/869 [00:07<00:01, 88.89it/s]
852
+
853
  81%|████████ | 705/869 [00:07<00:01, 88.84it/s]
854
+
855
  82%|████████▏ | 715/869 [00:07<00:01, 90.18it/s]
856
+
857
  83%|████████▎ | 725/869 [00:07<00:01, 91.74it/s]
858
+
859
  85%|████████▍ | 735/869 [00:07<00:01, 91.93it/s]
860
+
861
  86%|████████▌ | 745/869 [00:08<00:01, 92.83it/s]
862
+
863
  87%|████████▋ | 755/869 [00:08<00:01, 93.13it/s]
864
+
865
  88%|████████▊ | 765/869 [00:08<00:01, 92.30it/s]
866
+
867
  89%|████████▉ | 775/869 [00:08<00:01, 93.61it/s]
868
+
869
  90%|█████████ | 785/869 [00:08<00:00, 87.82it/s]
870
+
871
  91%|█████████▏| 795/869 [00:08<00:00, 90.27it/s]
872
+
873
  93%|█████████▎| 805/869 [00:08<00:00, 92.07it/s]
874
+
875
  94%|█████████▍| 815/869 [00:08<00:00, 91.94it/s]
876
+
877
  95%|█████████▍| 825/869 [00:08<00:00, 92.65it/s]
878
+
879
  96%|█████████▌| 835/869 [00:09<00:00, 93.01it/s]
880
+
881
  97%|█████████▋| 845/869 [00:09<00:00, 94.42it/s]
882
+
883
  98%|█████████▊| 855/869 [00:09<00:00, 94.77it/s]
884
+
885
 
886
+
887
 
888
  10%|█ | 493/4930 [01:59<14:25, 5.13it/s]
889
+
890
+
891
  [INFO|trainer.py:3503] 2024-09-05 09:22:54,048 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-493
892
+ [INFO|configuration_utils.py:472] 2024-09-05 09:22:54,050 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-493/config.json
893
+ [INFO|modeling_utils.py:2799] 2024-09-05 09:22:54,939 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-493/model.safetensors
894
+ [INFO|tokenization_utils_base.py:2684] 2024-09-05 09:22:54,940 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-493/tokenizer_config.json
895
+ [INFO|tokenization_utils_base.py:2693] 2024-09-05 09:22:54,940 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-493/special_tokens_map.json
896
+ [INFO|tokenization_utils_base.py:2684] 2024-09-05 09:22:56,701 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
897
+ [INFO|tokenization_utils_base.py:2693] 2024-09-05 09:22:56,701 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
898
+
899
  10%|█ | 494/4930 [02:02<6:07:04, 4.96s/it]
900
  10%|█ | 495/4930 [02:02<4:22:14, 3.55s/it]
901
  10%|█ | 496/4930 [02:02<3:08:13, 2.55s/it]
902
  10%|█ | 497/4930 [02:03<2:16:06, 1.84s/it]
903
  10%|█ | 498/4930 [02:03<1:39:48, 1.35s/it]
904
  10%|█ | 499/4930 [02:03<1:13:38, 1.00it/s]
905
  10%|█ | 500/4930 [02:03<55:44, 1.32it/s]
906
 
907
  10%|█ | 500/4930 [02:03<55:44, 1.32it/s]
908
  10%|█ | 501/4930 [02:03<43:09, 1.71it/s]
909
  10%|█ | 502/4930 [02:03<34:29, 2.14it/s]
910
  10%|█ | 503/4930 [02:04<28:10, 2.62it/s]
911
  10%|█ | 504/4930 [02:04<26:45, 2.76it/s]
912
  10%|█ | 505/4930 [02:04<24:10, 3.05it/s]
913
  10%|█ | 506/4930 [02:04<20:24, 3.61it/s]
914
  10%|█ | 507/4930 [02:05<19:29, 3.78it/s]
915
  10%|█ | 508/4930 [02:05<17:45, 4.15it/s]
916
  10%|█ | 509/4930 [02:05<18:47, 3.92it/s]
917
  10%|█ | 510/4930 [02:05<17:44, 4.15it/s]
918
  10%|█ | 511/4930 [02:05<16:28, 4.47it/s]
919
  10%|█ | 512/4930 [02:06<18:17, 4.03it/s]
920
  10%|█ | 513/4930 [02:06<16:56, 4.34it/s]
921
  10%|█ | 514/4930 [02:06<16:38, 4.42it/s]
922
  10%|█ | 515/4930 [02:07<18:48, 3.91it/s]
923
  10%|█ | 516/4930 [02:07<17:39, 4.17it/s]
924
  10%|█ | 517/4930 [02:07<15:58, 4.61it/s]
925
  11%|█ | 518/4930 [02:07<15:05, 4.88it/s]
926
  11%|█ | 519/4930 [02:07<15:18, 4.80it/s]
927
  11%|█ | 520/4930 [02:07<15:11, 4.84it/s]
928
  11%|█ | 521/4930 [02:08<16:26, 4.47it/s]
929
  11%|█ | 522/4930 [02:08<16:13, 4.53it/s]
930
  11%|█ | 523/4930 [02:08<14:35, 5.03it/s]
931
  11%|█ | 524/4930 [02:08<13:44, 5.34it/s]
932
  11%|█ | 525/4930 [02:09<15:54, 4.62it/s]
933
  11%|█ | 526/4930 [02:09<16:03, 4.57it/s]
934
  11%|█ | 527/4930 [02:09<16:09, 4.54it/s]
935
  11%|█ | 528/4930 [02:09<15:03, 4.87it/s]
936
  11%|█ | 529/4930 [02:09<15:05, 4.86it/s]
937
  11%|█ | 530/4930 [02:10<14:27, 5.07it/s]
938
  11%|█ | 531/4930 [02:10<16:03, 4.57it/s]
939
  11%|█ | 532/4930 [02:10<15:26, 4.75it/s]
940
  11%|█ | 533/4930 [02:10<14:59, 4.89it/s]
941
  11%|█ | 534/4930 [02:10<14:51, 4.93it/s]
942
  11%|█ | 535/4930 [02:11<14:11, 5.16it/s]
943
  11%|█ | 536/4930 [02:11<15:05, 4.85it/s]
944
  11%|█ | 537/4930 [02:11<14:26, 5.07it/s]
945
  11%|█ | 538/4930 [02:11<14:13, 5.15it/s]
946
  11%|█ | 539/4930 [02:11<15:19, 4.78it/s]
947
  11%|█ | 540/4930 [02:12<16:56, 4.32it/s]
948
  11%|█ | 541/4930 [02:12<16:18, 4.49it/s]
949
  11%|█ | 542/4930 [02:12<17:36, 4.16it/s]
950
  11%|█ | 543/4930 [02:12<16:14, 4.50it/s]
951
  11%|█ | 544/4930 [02:13<15:42, 4.65it/s]
952
  11%|█ | 545/4930 [02:13<16:11, 4.51it/s]
953
  11%|█ | 546/4930 [02:13<14:50, 4.93it/s]
954
  11%|█ | 547/4930 [02:13<14:54, 4.90it/s]
955
  11%|█ | 548/4930 [02:13<15:31, 4.71it/s]
956
  11%|█ | 549/4930 [02:14<15:00, 4.87it/s]
957
  11%|█ | 550/4930 [02:14<13:43, 5.32it/s]
958
  11%|█ | 551/4930 [02:14<15:26, 4.73it/s]
959
  11%|█ | 552/4930 [02:14<15:20, 4.76it/s]
960
  11%|█ | 553/4930 [02:14<16:12, 4.50it/s]
961
  11%|█ | 554/4930 [02:15<15:44, 4.63it/s]
962
  11%|█▏ | 555/4930 [02:15<17:39, 4.13it/s]
963
  11%|█▏ | 556/4930 [02:15<18:00, 4.05it/s]
964
  11%|█▏ | 557/4930 [02:16<18:59, 3.84it/s]
965
  11%|█▏ | 558/4930 [02:16<18:06, 4.02it/s]
966
  11%|█▏ | 559/4930 [02:16<16:37, 4.38it/s]
967
  11%|█▏ | 560/4930 [02:16<18:12, 4.00it/s]
968
  11%|█▏ | 561/4930 [02:16<17:50, 4.08it/s]
969
  11%|█▏ | 562/4930 [02:17<18:25, 3.95it/s]
970
  11%|█▏ | 563/4930 [02:17<17:49, 4.08it/s]
971
  11%|█▏ | 564/4930 [02:17<17:46, 4.09it/s]
972
  11%|█▏ | 565/4930 [02:17<18:39, 3.90it/s]
973
  11%|█▏ | 566/4930 [02:18<18:11, 4.00it/s]
974
  12%|█▏ | 567/4930 [02:18<16:57, 4.29it/s]
975
  12%|█▏ | 568/4930 [02:18<15:45, 4.61it/s]
976
  12%|█▏ | 569/4930 [02:18<17:48, 4.08it/s]
977
  12%|█▏ | 570/4930 [02:19<17:51, 4.07it/s]
978
  12%|█▏ | 571/4930 [02:19<17:07, 4.24it/s]
979
  12%|█▏ | 572/4930 [02:19<15:55, 4.56it/s]
980
  12%|█▏ | 573/4930 [02:19<15:08, 4.80it/s]
981
  12%|█▏ | 574/4930 [02:19<15:34, 4.66it/s]
982
  12%|█▏ | 575/4930 [02:20<14:43, 4.93it/s]
983
  12%|█▏ | 576/4930 [02:20<15:33, 4.66it/s]
984
  12%|█▏ | 577/4930 [02:20<15:42, 4.62it/s]
985
  12%|█▏ | 578/4930 [02:20<15:01, 4.83it/s]
986
  12%|█▏ | 579/4930 [02:20<15:35, 4.65it/s]
987
  12%|█▏ | 580/4930 [02:21<15:35, 4.65it/s]
988
  12%|█▏ | 581/4930 [02:21<15:31, 4.67it/s]
989
  12%|█▏ | 582/4930 [02:21<15:02, 4.82it/s]
990
  12%|█▏ | 583/4930 [02:21<15:29, 4.68it/s]
991
  12%|█▏ | 584/4930 [02:22<15:24, 4.70it/s]
992
  12%|█▏ | 585/4930 [02:22<16:33, 4.37it/s]
993
  12%|█▏ | 586/4930 [02:22<15:56, 4.54it/s]
994
  12%|█▏ | 587/4930 [02:22<15:11, 4.76it/s]
995
  12%|█▏ | 588/4930 [02:22<16:19, 4.43it/s]
996
  12%|█▏ | 589/4930 [02:23<15:40, 4.62it/s]
997
  12%|█▏ | 590/4930 [02:23<15:04, 4.80it/s]
998
  12%|█▏ | 591/4930 [02:23<17:43, 4.08it/s]
999
  12%|█▏ | 592/4930 [02:23<17:00, 4.25it/s]
1000
  12%|█▏ | 593/4930 [02:24<22:48, 3.17it/s]
1001
  12%|█▏ | 594/4930 [02:24<20:41, 3.49it/s]
1002
  12%|█▏ | 595/4930 [02:24<18:06, 3.99it/s]
1003
  12%|█▏ | 596/4930 [02:24<16:46, 4.31it/s]
1004
  12%|█▏ | 597/4930 [02:25<16:37, 4.35it/s]
1005
  12%|█▏ | 598/4930 [02:25<17:55, 4.03it/s]
1006
  12%|█▏ | 599/4930 [02:25<18:35, 3.88it/s]
1007
  12%|█▏ | 600/4930 [02:26<18:29, 3.90it/s]
1008
  12%|█▏ | 601/4930 [02:26<18:05, 3.99it/s]
1009
  12%|█▏ | 602/4930 [02:26<17:30, 4.12it/s]
1010
  12%|█▏ | 603/4930 [02:26<16:26, 4.39it/s]
1011
  12%|█▏ | 604/4930 [02:26<15:31, 4.64it/s]
1012
  12%|█▏ | 605/4930 [02:27<15:01, 4.80it/s]
1013
  12%|█▏ | 606/4930 [02:27<16:20, 4.41it/s]
1014
  12%|█▏ | 607/4930 [02:27<16:22, 4.40it/s]
1015
  12%|█▏ | 608/4930 [02:27<17:13, 4.18it/s]
1016
  12%|█▏ | 609/4930 [02:27<15:45, 4.57it/s]
1017
  12%|█▏ | 610/4930 [02:28<15:39, 4.60it/s]
1018
  12%|█▏ | 611/4930 [02:28<14:55, 4.82it/s]
1019
  12%|█▏ | 612/4930 [02:28<15:45, 4.57it/s]
1020
  12%|█▏ | 613/4930 [02:28<15:25, 4.67it/s]
1021
  12%|█▏ | 614/4930 [02:29<14:31, 4.95it/s]
1022
  12%|█▏ | 615/4930 [02:29<14:36, 4.92it/s]
1023
  12%|█▏ | 616/4930 [02:29<15:15, 4.71it/s]
1024
  13%|█▎ | 617/4930 [02:29<14:03, 5.11it/s]
1025
  13%|█▎ | 618/4930 [02:29<14:44, 4.87it/s]
1026
  13%|█▎ | 619/4930 [02:30<16:28, 4.36it/s]
1027
  13%|█▎ | 620/4930 [02:30<15:24, 4.66it/s]
1028
  13%|█▎ | 621/4930 [02:30<15:05, 4.76it/s]
1029
  13%|█▎ | 622/4930 [02:30<16:25, 4.37it/s]
1030
  13%|█▎ | 623/4930 [02:31<16:38, 4.31it/s]
1031
  13%|█▎ | 624/4930 [02:31<15:43, 4.57it/s]
1032
  13%|█▎ | 625/4930 [02:31<17:01, 4.21it/s]
1033
  13%|█▎ | 626/4930 [02:31<16:20, 4.39it/s]
1034
  13%|█▎ | 627/4930 [02:31<16:47, 4.27it/s]
1035
  13%|█▎ | 628/4930 [02:32<17:00, 4.22it/s]
1036
  13%|█▎ | 629/4930 [02:32<17:46, 4.03it/s]
1037
  13%|█▎ | 630/4930 [02:32<16:38, 4.31it/s]
1038
  13%|█▎ | 631/4930 [02:32<15:49, 4.53it/s]
1039
  13%|█▎ | 632/4930 [02:33<15:07, 4.74it/s]
1040
  13%|█▎ | 633/4930 [02:33<17:24, 4.11it/s]
1041
  13%|█▎ | 634/4930 [02:33<17:04, 4.19it/s]
1042
  13%|█▎ | 635/4930 [02:33<18:05, 3.96it/s]
1043
  13%|█▎ | 636/4930 [02:34<17:13, 4.15it/s]
1044
  13%|█▎ | 637/4930 [02:34<15:27, 4.63it/s]
1045
  13%|█▎ | 638/4930 [02:34<16:50, 4.25it/s]
1046
  13%|█▎ | 639/4930 [02:34<15:52, 4.50it/s]
1047
  13%|█▎ | 640/4930 [02:34<15:21, 4.66it/s]
1048
  13%|█▎ | 641/4930 [02:35<15:25, 4.64it/s]
1049
  13%|█▎ | 642/4930 [02:35<15:46, 4.53it/s]
1050
  13%|█▎ | 643/4930 [02:35<15:43, 4.55it/s]
1051
  13%|█▎ | 644/4930 [02:35<14:10, 5.04it/s]
1052
  13%|█▎ | 645/4930 [02:35<14:51, 4.80it/s]
1053
  13%|█▎ | 646/4930 [02:36<15:44, 4.54it/s]
1054
  13%|█▎ | 647/4930 [02:36<15:11, 4.70it/s]
1055
  13%|█▎ | 648/4930 [02:36<16:50, 4.24it/s]
1056
  13%|█▎ | 649/4930 [02:36<17:13, 4.14it/s]
1057
  13%|█▎ | 650/4930 [02:37<16:35, 4.30it/s]
1058
  13%|█▎ | 651/4930 [02:37<16:04, 4.44it/s]
1059
  13%|█▎ | 652/4930 [02:37<15:55, 4.48it/s]
1060
  13%|█▎ | 653/4930 [02:37<14:40, 4.86it/s]
1061
  13%|█▎ | 654/4930 [02:37<14:10, 5.03it/s]
1062
  13%|█▎ | 655/4930 [02:38<14:21, 4.96it/s]
1063
  13%|█▎ | 656/4930 [02:38<14:37, 4.87it/s]
1064
  13%|█▎ | 657/4930 [02:38<15:38, 4.55it/s]
1065
  13%|█▎ | 658/4930 [02:38<14:58, 4.76it/s]
1066
  13%|█▎ | 659/4930 [02:38<14:19, 4.97it/s]
1067
  13%|█▎ | 660/4930 [02:39<16:15, 4.38it/s]
1068
  13%|█▎ | 661/4930 [02:39<16:16, 4.37it/s]
1069
  13%|█▎ | 662/4930 [02:39<15:24, 4.62it/s]
1070
  13%|█▎ | 663/4930 [02:39<16:04, 4.42it/s]
1071
  13%|█▎ | 664/4930 [02:40<16:12, 4.39it/s]
1072
  13%|█▎ | 665/4930 [02:40<17:39, 4.03it/s]
1073
  14%|█▎ | 666/4930 [02:40<15:44, 4.51it/s]
1074
  14%|█▎ | 667/4930 [02:40<15:26, 4.60it/s]
1075
  14%|█▎ | 668/4930 [02:41<14:58, 4.74it/s]
1076
  14%|█▎ | 669/4930 [02:41<15:29, 4.59it/s]
1077
  14%|█▎ | 670/4930 [02:41<16:01, 4.43it/s]
1078
  14%|█▎ | 671/4930 [02:41<15:43, 4.52it/s]
1079
  14%|█▎ | 672/4930 [02:41<15:11, 4.67it/s]
1080
  14%|█▎ | 673/4930 [02:42<13:50, 5.12it/s]
1081
  14%|█▎ | 674/4930 [02:42<14:52, 4.77it/s]
1082
  14%|█▎ | 675/4930 [02:42<14:57, 4.74it/s]
1083
  14%|█▎ | 676/4930 [02:42<13:35, 5.22it/s]
1084
  14%|█▎ | 677/4930 [02:42<15:21, 4.62it/s]
1085
  14%|█▍ | 678/4930 [02:43<14:42, 4.82it/s]
1086
  14%|█▍ | 679/4930 [02:43<15:26, 4.59it/s]
1087
  14%|█▍ | 680/4930 [02:43<14:14, 4.97it/s]
1088
  14%|█▍ | 681/4930 [02:43<15:17, 4.63it/s]
1089
  14%|█▍ | 682/4930 [02:43<14:50, 4.77it/s]
1090
  14%|█▍ | 683/4930 [02:44<14:24, 4.91it/s]
1091
  14%|█▍ | 684/4930 [02:44<14:33, 4.86it/s]
1092
  14%|█▍ | 685/4930 [02:44<14:50, 4.77it/s]
1093
  14%|█▍ | 686/4930 [02:44<14:52, 4.76it/s]
1094
  14%|█▍ | 687/4930 [02:44<14:04, 5.02it/s]
1095
  14%|█▍ | 688/4930 [02:45<15:34, 4.54it/s]
1096
  14%|█▍ | 689/4930 [02:45<16:22, 4.32it/s]
1097
  14%|█▍ | 690/4930 [02:45<15:01, 4.70it/s]
1098
  14%|█▍ | 691/4930 [02:45<14:10, 4.99it/s]
1099
  14%|█▍ | 692/4930 [02:46<13:18, 5.31it/s]
1100
  14%|█▍ | 693/4930 [02:46<12:51, 5.49it/s]
1101
  14%|█▍ | 694/4930 [02:46<13:48, 5.11it/s]
1102
  14%|█▍ | 695/4930 [02:46<14:12, 4.97it/s]
1103
  14%|█▍ | 696/4930 [02:46<13:57, 5.06it/s]
1104
  14%|█▍ | 697/4930 [02:46<13:50, 5.10it/s]
1105
  14%|█▍ | 698/4930 [02:47<13:22, 5.28it/s]
1106
  14%|█▍ | 699/4930 [02:47<13:59, 5.04it/s]
1107
  14%|█▍ | 700/4930 [02:47<13:57, 5.05it/s]
1108
  14%|█▍ | 701/4930 [02:47<14:25, 4.89it/s]
1109
  14%|█▍ | 702/4930 [02:48<16:00, 4.40it/s]
1110
  14%|█▍ | 703/4930 [02:48<16:39, 4.23it/s]
1111
  14%|█▍ | 704/4930 [02:48<15:44, 4.47it/s]
1112
  14%|█▍ | 705/4930 [02:48<17:29, 4.03it/s]
1113
  14%|█▍ | 706/4930 [02:49<15:59, 4.40it/s]
1114
  14%|█▍ | 707/4930 [02:49<14:21, 4.90it/s]
1115
  14%|█▍ | 708/4930 [02:49<14:51, 4.73it/s]
1116
  14%|█▍ | 709/4930 [02:49<14:56, 4.71it/s]
1117
  14%|█▍ | 710/4930 [02:49<14:50, 4.74it/s]
1118
  14%|█▍ | 711/4930 [02:50<14:40, 4.79it/s]
1119
  14%|█▍ | 712/4930 [02:50<16:01, 4.39it/s]
1120
  14%|█▍ | 713/4930 [02:50<15:18, 4.59it/s]
1121
  14%|█▍ | 714/4930 [02:50<14:29, 4.85it/s]
1122
  15%|█▍ | 715/4930 [02:50<13:56, 5.04it/s]
1123
  15%|█▍ | 716/4930 [02:51<14:37, 4.80it/s]
1124
  15%|█▍ | 717/4930 [02:51<15:11, 4.62it/s]
1125
  15%|█▍ | 718/4930 [02:51<15:50, 4.43it/s]
1126
  15%|█▍ | 719/4930 [02:51<16:18, 4.30it/s]
1127
  15%|█▍ | 720/4930 [02:52<15:44, 4.46it/s]
1128
  15%|█▍ | 721/4930 [02:52<15:32, 4.51it/s]
1129
  15%|█▍ | 722/4930 [02:52<15:24, 4.55it/s]
1130
  15%|█▍ | 723/4930 [02:52<16:03, 4.37it/s]
1131
  15%|█▍ | 724/4930 [02:52<14:59, 4.67it/s]
1132
  15%|█▍ | 725/4930 [02:53<15:41, 4.47it/s]
1133
  15%|█▍ | 726/4930 [02:53<18:50, 3.72it/s]
1134
  15%|█▍ | 727/4930 [02:53<17:29, 4.00it/s]
1135
  15%|█▍ | 728/4930 [02:53<15:35, 4.49it/s]
1136
  15%|█▍ | 729/4930 [02:54<15:27, 4.53it/s]
1137
  15%|█▍ | 730/4930 [02:54<15:53, 4.41it/s]
1138
  15%|█▍ | 731/4930 [02:54<15:52, 4.41it/s]
1139
  15%|█▍ | 732/4930 [02:54<16:51, 4.15it/s]
1140
  15%|█▍ | 733/4930 [02:55<16:29, 4.24it/s]
1141
  15%|█▍ | 734/4930 [02:55<15:32, 4.50it/s]
1142
  15%|█▍ | 735/4930 [02:55<14:38, 4.77it/s]
1143
  15%|█▍ | 736/4930 [02:55<15:33, 4.49it/s]
1144
  15%|█▍ | 737/4930 [02:56<18:00, 3.88it/s]
1145
  15%|█▍ | 738/4930 [02:56<16:41, 4.18it/s]
1146
  15%|█▍ | 739/4930 [02:56<15:23, 4.54it/s]
1147
  15%|█▌ | 740/4930 [02:56<15:28, 4.51it/s]
1148
  15%|█▌ | 741/4930 [02:56<14:55, 4.68it/s]
1149
  15%|█▌ | 742/4930 [02:57<14:38, 4.77it/s]
1150
  15%|█▌ | 743/4930 [02:57<14:54, 4.68it/s]
1151
  15%|█▌ | 744/4930 [02:57<14:51, 4.70it/s]
1152
  15%|█▌ | 745/4930 [02:57<13:32, 5.15it/s]
1153
  15%|█▌ | 746/4930 [02:57<13:15, 5.26it/s]
1154
  15%|█▌ | 747/4930 [02:58<14:24, 4.84it/s]
1155
  15%|█▌ | 748/4930 [02:58<13:48, 5.05it/s]
1156
  15%|█▌ | 749/4930 [02:58<14:32, 4.79it/s]
1157
  15%|█▌ | 750/4930 [02:58<14:58, 4.65it/s]
1158
  15%|█▌ | 751/4930 [02:58<14:27, 4.82it/s]
1159
  15%|█▌ | 752/4930 [02:59<14:48, 4.70it/s]
1160
  15%|█▌ | 753/4930 [02:59<13:57, 4.99it/s]
1161
  15%|█▌ | 754/4930 [02:59<14:50, 4.69it/s]
1162
  15%|█▌ | 755/4930 [02:59<13:55, 5.00it/s]
1163
  15%|█▌ | 756/4930 [02:59<13:16, 5.24it/s]
1164
  15%|█▌ | 757/4930 [03:00<14:53, 4.67it/s]
1165
  15%|█▌ | 758/4930 [03:00<13:58, 4.98it/s]
1166
  15%|█▌ | 759/4930 [03:00<14:30, 4.79it/s]
1167
  15%|█▌ | 760/4930 [03:00<13:42, 5.07it/s]
1168
  15%|█▌ | 761/4930 [03:00<13:21, 5.20it/s]
1169
  15%|█▌ | 762/4930 [03:01<13:19, 5.21it/s]
1170
  15%|█▌ | 763/4930 [03:01<15:09, 4.58it/s]
1171
  15%|█▌ | 764/4930 [03:01<14:40, 4.73it/s]
1172
  16%|█▌ | 765/4930 [03:01<14:00, 4.96it/s]
1173
  16%|█▌ | 766/4930 [03:01<13:37, 5.09it/s]
1174
  16%|█▌ | 767/4930 [03:02<13:59, 4.96it/s]
1175
  16%|█▌ | 768/4930 [03:02<13:38, 5.09it/s]
1176
  16%|█▌ | 769/4930 [03:02<13:16, 5.22it/s]
1177
  16%|█▌ | 770/4930 [03:02<13:23, 5.18it/s]
1178
  16%|█▌ | 771/4930 [03:02<13:10, 5.26it/s]
1179
  16%|█▌ | 772/4930 [03:03<14:57, 4.63it/s]
1180
  16%|█▌ | 773/4930 [03:03<16:11, 4.28it/s]
1181
  16%|█▌ | 774/4930 [03:03<16:44, 4.14it/s]
1182
  16%|█▌ | 775/4930 [03:03<18:18, 3.78it/s]
1183
  16%|█▌ | 776/4930 [03:04<17:16, 4.01it/s]
1184
  16%|█▌ | 777/4930 [03:04<17:28, 3.96it/s]
1185
  16%|█▌ | 778/4930 [03:04<16:26, 4.21it/s]
1186
  16%|█▌ | 779/4930 [03:04<14:59, 4.62it/s]
1187
  16%|█▌ | 780/4930 [03:05<15:38, 4.42it/s]
1188
  16%|█▌ | 781/4930 [03:05<14:29, 4.77it/s]
1189
  16%|█▌ | 782/4930 [03:05<13:56, 4.96it/s]
1190
  16%|█▌ | 783/4930 [03:05<13:36, 5.08it/s]
1191
  16%|█▌ | 784/4930 [03:05<13:01, 5.30it/s]
1192
  16%|█▌ | 785/4930 [03:05<12:32, 5.51it/s]
1193
  16%|█▌ | 786/4930 [03:06<12:35, 5.49it/s]
1194
  16%|█▌ | 787/4930 [03:06<13:28, 5.12it/s]
1195
  16%|█▌ | 788/4930 [03:06<12:57, 5.32it/s]
1196
  16%|█▌ | 789/4930 [03:06<11:54, 5.79it/s]
1197
  16%|█▌ | 790/4930 [03:06<12:52, 5.36it/s]
1198
  16%|█▌ | 791/4930 [03:07<12:59, 5.31it/s]
1199
  16%|█▌ | 792/4930 [03:07<13:55, 4.96it/s]
1200
  16%|█▌ | 793/4930 [03:07<15:38, 4.41it/s]
1201
  16%|█▌ | 794/4930 [03:07<15:32, 4.44it/s]
1202
  16%|█▌ | 795/4930 [03:08<15:12, 4.53it/s]
1203
  16%|█▌ | 796/4930 [03:08<17:33, 3.93it/s]
1204
  16%|█▌ | 797/4930 [03:08<18:42, 3.68it/s]
1205
  16%|█▌ | 798/4930 [03:08<16:12, 4.25it/s]
1206
  16%|█▌ | 799/4930 [03:08<14:51, 4.63it/s]
1207
  16%|█▌ | 800/4930 [03:09<15:04, 4.57it/s]
1208
  16%|█▌ | 801/4930 [03:09<15:35, 4.41it/s]
1209
  16%|█▋ | 802/4930 [03:09<14:27, 4.76it/s]
1210
  16%|█▋ | 803/4930 [03:09<13:50, 4.97it/s]
1211
  16%|█▋ | 804/4930 [03:09<13:30, 5.09it/s]
1212
  16%|█▋ | 805/4930 [03:10<13:24, 5.13it/s]
1213
  16%|█▋ | 806/4930 [03:10<13:42, 5.01it/s]
1214
  16%|█▋ | 807/4930 [03:10<14:36, 4.70it/s]
1215
  16%|█▋ | 808/4930 [03:10<14:37, 4.70it/s]
1216
  16%|█▋ | 809/4930 [03:11<14:30, 4.74it/s]
1217
  16%|█▋ | 810/4930 [03:11<14:06, 4.87it/s]
1218
  16%|█▋ | 811/4930 [03:11<12:36, 5.45it/s]
1219
  16%|█▋ | 812/4930 [03:11<13:41, 5.01it/s]
1220
  16%|█▋ | 813/4930 [03:11<14:06, 4.86it/s]
1221
  17%|█▋ | 814/4930 [03:12<13:55, 4.93it/s]
1222
  17%|█▋ | 815/4930 [03:12<13:48, 4.97it/s]
1223
  17%|█▋ | 816/4930 [03:12<14:19, 4.79it/s]
1224
  17%|█▋ | 817/4930 [03:12<14:48, 4.63it/s]
1225
  17%|█▋ | 818/4930 [03:12<15:47, 4.34it/s]
1226
  17%|█▋ | 819/4930 [03:13<14:55, 4.59it/s]
1227
  17%|█▋ | 820/4930 [03:13<14:09, 4.84it/s]
1228
  17%|█▋ | 821/4930 [03:13<13:52, 4.93it/s]
1229
  17%|█▋ | 822/4930 [03:13<13:24, 5.11it/s]
1230
  17%|█▋ | 823/4930 [03:13<12:29, 5.48it/s]
1231
  17%|█▋ | 824/4930 [03:14<12:50, 5.33it/s]
1232
  17%|█▋ | 825/4930 [03:14<12:51, 5.32it/s]
1233
  17%|█▋ | 826/4930 [03:14<13:02, 5.24it/s]
1234
  17%|█▋ | 827/4930 [03:14<14:00, 4.88it/s]
1235
  17%|█▋ | 828/4930 [03:14<14:34, 4.69it/s]
1236
  17%|█▋ | 829/4930 [03:15<14:37, 4.67it/s]
1237
  17%|█▋ | 830/4930 [03:15<13:33, 5.04it/s]
1238
  17%|█▋ | 831/4930 [03:15<14:28, 4.72it/s]
1239
  17%|█▋ | 832/4930 [03:15<13:34, 5.03it/s]
1240
  17%|█▋ | 833/4930 [03:15<13:34, 5.03it/s]
1241
  17%|█▋ | 834/4930 [03:16<13:33, 5.03it/s]
1242
  17%|█▋ | 835/4930 [03:16<13:25, 5.08it/s]
1243
  17%|█▋ | 836/4930 [03:16<16:35, 4.11it/s]
1244
  17%|█▋ | 837/4930 [03:16<15:17, 4.46it/s]
1245
  17%|█▋ | 838/4930 [03:17<17:41, 3.85it/s]
1246
  17%|█▋ | 839/4930 [03:17<16:51, 4.05it/s]
1247
  17%|█▋ | 840/4930 [03:17<17:03, 3.99it/s]
1248
  17%|█▋ | 841/4930 [03:17<15:57, 4.27it/s]
1249
  17%|█▋ | 842/4930 [03:18<15:15, 4.47it/s]
1250
  17%|█▋ | 843/4930 [03:18<14:06, 4.83it/s]
1251
  17%|█▋ | 844/4930 [03:18<14:14, 4.78it/s]
1252
  17%|█▋ | 845/4930 [03:18<14:20, 4.75it/s]
1253
  17%|█▋ | 846/4930 [03:18<14:48, 4.60it/s]
1254
  17%|█▋ | 847/4930 [03:19<16:32, 4.11it/s]
1255
  17%|█▋ | 848/4930 [03:19<15:11, 4.48it/s]
1256
  17%|█▋ | 849/4930 [03:19<15:43, 4.33it/s]
1257
  17%|█▋ | 850/4930 [03:19<15:12, 4.47it/s]
1258
  17%|█▋ | 851/4930 [03:19<14:30, 4.68it/s]
1259
  17%|█▋ | 852/4930 [03:20<13:47, 4.93it/s]
1260
  17%|█▋ | 853/4930 [03:20<12:39, 5.37it/s]
1261
  17%|█▋ | 854/4930 [03:20<14:01, 4.84it/s]
1262
  17%|█▋ | 855/4930 [03:20<13:43, 4.95it/s]
1263
  17%|█▋ | 856/4930 [03:20<14:19, 4.74it/s]
1264
  17%|█▋ | 857/4930 [03:21<14:09, 4.79it/s]
1265
  17%|█▋ | 858/4930 [03:21<13:10, 5.15it/s]
1266
  17%|█▋ | 859/4930 [03:21<13:07, 5.17it/s]
1267
  17%|█▋ | 860/4930 [03:21<14:11, 4.78it/s]
1268
  17%|█▋ | 861/4930 [03:21<13:02, 5.20it/s]
1269
  17%|█▋ | 862/4930 [03:22<13:36, 4.98it/s]
1270
  18%|█▊ | 863/4930 [03:22<13:22, 5.07it/s]
1271
  18%|█▊ | 864/4930 [03:22<13:49, 4.90it/s]
1272
  18%|█▊ | 865/4930 [03:22<14:31, 4.67it/s]
1273
  18%|█▊ | 866/4930 [03:23<14:42, 4.60it/s]
1274
  18%|█▊ | 867/4930 [03:23<14:52, 4.55it/s]
1275
  18%|█▊ | 868/4930 [03:23<14:25, 4.69it/s]
1276
  18%|█▊ | 869/4930 [03:23<13:00, 5.20it/s]
1277
  18%|█▊ | 870/4930 [03:23<12:32, 5.39it/s]
1278
  18%|█▊ | 871/4930 [03:23<13:26, 5.03it/s]
1279
  18%|█▊ | 872/4930 [03:24<12:41, 5.33it/s]
1280
  18%|█▊ | 873/4930 [03:24<12:58, 5.21it/s]
1281
  18%|█▊ | 874/4930 [03:24<12:16, 5.50it/s]
1282
  18%|█▊ | 875/4930 [03:24<12:25, 5.44it/s]
1283
  18%|█▊ | 876/4930 [03:24<13:21, 5.06it/s]
1284
  18%|█▊ | 877/4930 [03:25<12:59, 5.20it/s]
1285
  18%|█▊ | 878/4930 [03:25<13:38, 4.95it/s]
1286
  18%|█▊ | 879/4930 [03:25<12:50, 5.25it/s]
1287
  18%|█▊ | 880/4930 [03:25<12:27, 5.42it/s]
1288
  18%|█▊ | 881/4930 [03:25<12:43, 5.30it/s]
1289
  18%|█▊ | 882/4930 [03:26<14:47, 4.56it/s]
1290
  18%|█▊ | 883/4930 [03:26<15:41, 4.30it/s]
1291
  18%|█▊ | 884/4930 [03:26<16:55, 3.99it/s]
1292
  18%|█▊ | 885/4930 [03:26<16:19, 4.13it/s]
1293
  18%|█▊ | 886/4930 [03:27<16:44, 4.02it/s]
1294
  18%|█▊ | 887/4930 [03:27<15:45, 4.28it/s]
1295
  18%|█▊ | 888/4930 [03:27<14:53, 4.52it/s]
1296
  18%|█▊ | 889/4930 [03:27<13:58, 4.82it/s]
1297
  18%|█▊ | 890/4930 [03:27<14:17, 4.71it/s]
1298
  18%|█▊ | 891/4930 [03:28<13:40, 4.92it/s]
1299
  18%|█▊ | 892/4930 [03:28<13:35, 4.95it/s]
1300
  18%|█▊ | 893/4930 [03:28<14:26, 4.66it/s]
1301
  18%|█▊ | 894/4930 [03:28<15:30, 4.34it/s]
1302
  18%|█▊ | 895/4930 [03:29<14:40, 4.58it/s]
1303
  18%|█▊ | 896/4930 [03:29<14:11, 4.74it/s]
1304
  18%|█▊ | 897/4930 [03:29<14:04, 4.77it/s]
1305
  18%|█▊ | 898/4930 [03:29<13:56, 4.82it/s]
1306
  18%|█▊ | 899/4930 [03:29<14:09, 4.75it/s]
1307
  18%|█▊ | 900/4930 [03:30<15:00, 4.47it/s]
1308
  18%|█▊ | 901/4930 [03:30<15:35, 4.31it/s]
1309
  18%|█▊ | 902/4930 [03:30<15:25, 4.35it/s]
1310
  18%|█▊ | 903/4930 [03:30<14:15, 4.71it/s]
1311
  18%|█▊ | 904/4930 [03:30<13:49, 4.86it/s]
1312
  18%|█▊ | 905/4930 [03:31<13:41, 4.90it/s]
1313
  18%|█▊ | 906/4930 [03:31<14:08, 4.74it/s]
1314
  18%|█▊ | 907/4930 [03:31<14:40, 4.57it/s]
1315
  18%|█▊ | 908/4930 [03:31<13:31, 4.96it/s]
1316
  18%|█▊ | 909/4930 [03:31<13:18, 5.03it/s]
1317
  18%|█▊ | 910/4930 [03:32<14:30, 4.62it/s]
1318
  18%|█▊ | 911/4930 [03:32<13:42, 4.89it/s]
1319
  18%|█▊ | 912/4930 [03:32<13:21, 5.01it/s]
1320
  19%|█▊ | 913/4930 [03:32<13:23, 5.00it/s]
1321
  19%|█▊ | 914/4930 [03:33<13:19, 5.02it/s]
1322
  19%|█▊ | 915/4930 [03:33<13:06, 5.10it/s]
1323
  19%|█▊ | 916/4930 [03:33<12:35, 5.32it/s]
1324
  19%|█▊ | 917/4930 [03:33<12:42, 5.26it/s]
1325
  19%|█▊ | 918/4930 [03:33<14:14, 4.69it/s]
1326
  19%|█▊ | 919/4930 [03:34<14:15, 4.69it/s]
1327
  19%|█▊ | 920/4930 [03:34<14:08, 4.72it/s]
1328
  19%|█▊ | 921/4930 [03:34<13:04, 5.11it/s]
1329
  19%|█▊ | 922/4930 [03:34<12:34, 5.31it/s]
1330
  19%|█▊ | 923/4930 [03:34<13:09, 5.08it/s]
1331
  19%|█▊ | 924/4930 [03:34<12:09, 5.49it/s]
1332
  19%|█▉ | 925/4930 [03:35<12:30, 5.33it/s]
1333
  19%|█▉ | 926/4930 [03:35<12:13, 5.46it/s]
1334
  19%|█▉ | 927/4930 [03:35<12:26, 5.36it/s]
1335
  19%|█▉ | 928/4930 [03:35<12:41, 5.26it/s]
1336
  19%|█▉ | 929/4930 [03:35<12:25, 5.37it/s]
1337
  19%|█▉ | 930/4930 [03:36<13:18, 5.01it/s]
1338
  19%|█▉ | 931/4930 [03:36<13:30, 4.94it/s]
1339
  19%|█▉ | 932/4930 [03:36<12:10, 5.47it/s]
1340
  19%|█▉ | 933/4930 [03:36<12:30, 5.32it/s]
1341
  19%|█▉ | 934/4930 [03:36<13:17, 5.01it/s]
1342
  19%|█▉ | 935/4930 [03:37<13:22, 4.98it/s]
1343
  19%|█▉ | 936/4930 [03:37<13:11, 5.05it/s]
1344
  19%|█▉ | 937/4930 [03:37<13:35, 4.89it/s]
1345
  19%|█▉ | 938/4930 [03:37<14:50, 4.48it/s]
1346
  19%|█▉ | 939/4930 [03:37<13:56, 4.77it/s]
1347
  19%|█▉ | 940/4930 [03:38<13:08, 5.06it/s]
1348
  19%|█▉ | 941/4930 [03:38<13:04, 5.08it/s]
1349
  19%|█▉ | 942/4930 [03:38<12:46, 5.20it/s]
1350
  19%|█▉ | 943/4930 [03:38<13:01, 5.10it/s]
1351
  19%|█▉ | 944/4930 [03:38<12:36, 5.27it/s]
1352
  19%|█▉ | 945/4930 [03:39<13:04, 5.08it/s]
1353
  19%|█▉ | 946/4930 [03:39<13:56, 4.76it/s]
1354
  19%|█▉ | 947/4930 [03:39<13:09, 5.04it/s]
1355
  19%|█▉ | 948/4930 [03:39<14:40, 4.52it/s]
1356
  19%|█▉ | 949/4930 [03:40<14:42, 4.51it/s]
1357
  19%|█▉ | 950/4930 [03:40<14:26, 4.59it/s]
1358
  19%|█▉ | 951/4930 [03:40<13:59, 4.74it/s]
1359
  19%|█▉ | 952/4930 [03:40<14:05, 4.70it/s]
1360
  19%|█▉ | 953/4930 [03:40<13:45, 4.82it/s]
1361
  19%|█▉ | 954/4930 [03:41<13:37, 4.87it/s]
1362
  19%|█▉ | 955/4930 [03:41<16:47, 3.94it/s]
1363
  19%|█▉ | 956/4930 [03:41<15:39, 4.23it/s]
1364
  19%|█▉ | 957/4930 [03:41<14:58, 4.42it/s]
1365
  19%|█▉ | 958/4930 [03:41<13:55, 4.75it/s]
1366
  19%|█▉ | 959/4930 [03:42<13:38, 4.85it/s]
1367
  19%|█▉ | 960/4930 [03:42<14:30, 4.56it/s]
1368
  19%|█▉ | 961/4930 [03:42<14:57, 4.42it/s]
1369
  20%|█▉ | 962/4930 [03:42<16:05, 4.11it/s]
1370
  20%|█▉ | 963/4930 [03:43<14:35, 4.53it/s]
1371
  20%|█▉ | 964/4930 [03:43<15:53, 4.16it/s]
1372
  20%|█▉ | 965/4930 [03:43<15:56, 4.15it/s]
1373
  20%|█▉ | 966/4930 [03:43<15:19, 4.31it/s]
1374
  20%|█▉ | 967/4930 [03:44<14:47, 4.46it/s]
1375
  20%|█▉ | 968/4930 [03:44<14:22, 4.60it/s]
1376
  20%|█▉ | 969/4930 [03:44<14:52, 4.44it/s]
1377
  20%|█▉ | 970/4930 [03:44<15:38, 4.22it/s]
1378
  20%|█▉ | 971/4930 [03:45<16:16, 4.06it/s]
1379
  20%|█▉ | 972/4930 [03:45<15:30, 4.25it/s]
1380
  20%|█▉ | 973/4930 [03:45<14:33, 4.53it/s]
1381
  20%|█▉ | 974/4930 [03:45<13:31, 4.88it/s]
1382
  20%|█▉ | 975/4930 [03:45<12:53, 5.12it/s]
1383
  20%|█▉ | 976/4930 [03:45<13:21, 4.93it/s]
1384
  20%|█▉ | 977/4930 [03:46<14:24, 4.57it/s]
1385
  20%|█▉ | 978/4930 [03:46<16:04, 4.10it/s]
1386
  20%|█▉ | 979/4930 [03:46<15:07, 4.35it/s]
1387
  20%|█▉ | 980/4930 [03:46<13:59, 4.71it/s]
1388
  20%|█▉ | 981/4930 [03:47<14:41, 4.48it/s]
1389
  20%|█▉ | 982/4930 [03:47<13:46, 4.78it/s]
1390
  20%|█▉ | 983/4930 [03:47<13:53, 4.74it/s]
1391
  20%|█▉ | 984/4930 [03:47<13:19, 4.94it/s]
1392
  20%|█▉ | 985/4930 [03:48<14:56, 4.40it/s]
1393
  20%|██ | 986/4930 [03:48<14:05, 4.66it/s][INFO|trainer.py:811] 2024-09-05 09:24:42,832 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
1394
+ [INFO|trainer.py:3819] 2024-09-05 09:24:42,834 >>
1395
+ ***** Running Evaluation *****
1396
+ [INFO|trainer.py:3821] 2024-09-05 09:24:42,834 >> Num examples = 6946
1397
+ [INFO|trainer.py:3824] 2024-09-05 09:24:42,834 >> Batch size = 8
1398
+ {'eval_loss': 0.004987192340195179, 'eval_precision': 0.9288389513108615, 'eval_recall': 0.9245107176141659, 'eval_f1': 0.9266697804764128, 'eval_accuracy': 0.9986744062735468, 'eval_runtime': 13.1382, 'eval_samples_per_second': 528.689, 'eval_steps_per_second': 66.143, 'epoch': 1.0}
1399
+ {'loss': 0.018, 'grad_norm': 0.12838158011436462, 'learning_rate': 4.4929006085192696e-05, 'epoch': 1.01}
1400
+
1401
+
1402
  0%| | 0/869 [00:00<?, ?it/s]
1403
+
1404
  1%|▏ | 11/869 [00:00<00:08, 106.52it/s]
1405
+
1406
  3%|▎ | 22/869 [00:00<00:08, 97.56it/s] 
1407
+
1408
  4%|▎ | 32/869 [00:00<00:08, 95.17it/s]
1409
+
1410
  5%|▍ | 43/869 [00:00<00:08, 97.24it/s]
1411
+
1412
  6%|▌ | 53/869 [00:00<00:08, 97.66it/s]
1413
+
1414
  7%|▋ | 63/869 [00:00<00:08, 94.56it/s]
1415
+
1416
  8%|▊ | 73/869 [00:00<00:08, 95.04it/s]
1417
+
1418
  10%|▉ | 83/869 [00:00<00:08, 95.18it/s]
1419
+
1420
  11%|█ | 93/869 [00:00<00:08, 95.93it/s]
1421
+
1422
  12%|█▏ | 103/869 [00:01<00:07, 96.77it/s]
1423
+
1424
  13%|█▎ | 113/869 [00:01<00:08, 94.06it/s]
1425
+
1426
  14%|█▍ | 123/869 [00:01<00:08, 92.99it/s]
1427
+
1428
  15%|█▌ | 133/869 [00:01<00:07, 93.26it/s]
1429
+
1430
  16%|█▋ | 143/869 [00:01<00:07, 91.71it/s]
1431
+
1432
  18%|█▊ | 153/869 [00:01<00:07, 90.85it/s]
1433
+
1434
  19%|█▉ | 163/869 [00:01<00:07, 91.27it/s]
1435
+
1436
  20%|█▉ | 173/869 [00:01<00:07, 90.71it/s]
1437
+
1438
  21%|██ | 183/869 [00:01<00:07, 91.28it/s]
1439
+
1440
  22%|██▏ | 193/869 [00:02<00:07, 91.06it/s]
1441
+
1442
  23%|██▎ | 203/869 [00:02<00:07, 92.75it/s]
1443
+
1444
  25%|██▍ | 213/869 [00:02<00:07, 93.32it/s]
1445
+
1446
  26%|██▌ | 223/869 [00:02<00:06, 93.38it/s]
1447
+
1448
  27%|██▋ | 233/869 [00:02<00:06, 91.09it/s]
1449
+
1450
  28%|██▊ | 243/869 [00:02<00:07, 87.91it/s]
1451
+
1452
  29%|██▉ | 253/869 [00:02<00:06, 90.52it/s]
1453
+
1454
  30%|███ | 263/869 [00:02<00:06, 92.15it/s]
1455
+
1456
  31%|███▏ | 273/869 [00:02<00:06, 91.45it/s]
1457
+
1458
  33%|███▎ | 283/869 [00:03<00:06, 90.16it/s]
1459
+
1460
  34%|███▎ | 293/869 [00:03<00:06, 91.10it/s]
1461
+
1462
  35%|███▍ | 303/869 [00:03<00:06, 89.95it/s]
1463
+
1464
  36%|███▌ | 313/869 [00:03<00:06, 90.24it/s]
1465
+
1466
  37%|███▋ | 323/869 [00:03<00:06, 89.85it/s]
1467
+
1468
  38%|███▊ | 333/869 [00:03<00:05, 92.32it/s]
1469
+
1470
  39%|███▉ | 343/869 [00:03<00:05, 88.93it/s]
1471
+
1472
  41%|████ | 352/869 [00:03<00:05, 88.63it/s]
1473
+
1474
  42%|████▏ | 362/869 [00:03<00:05, 90.27it/s]
1475
+
1476
  43%|████▎ | 372/869 [00:04<00:05, 90.81it/s]
1477
+
1478
  44%|████▍ | 382/869 [00:04<00:05, 89.44it/s]
1479
+
1480
  45%|████▍ | 391/869 [00:04<00:05, 86.77it/s]
1481
+
1482
  46%|████▌ | 401/869 [00:04<00:05, 89.06it/s]
1483
+
1484
  47%|████▋ | 411/869 [00:04<00:05, 91.46it/s]
1485
+
1486
  48%|████▊ | 421/869 [00:04<00:04, 91.99it/s]
1487
+
1488
  50%|████▉ | 431/869 [00:04<00:04, 94.19it/s]
1489
+
1490
  51%|█████ | 441/869 [00:04<00:04, 91.35it/s]
1491
+
1492
  52%|█████▏ | 451/869 [00:04<00:04, 91.94it/s]
1493
+
1494
  53%|█████▎ | 461/869 [00:05<00:04, 90.91it/s]
1495
+
1496
  54%|█████▍ | 471/869 [00:05<00:04, 93.07it/s]
1497
+
1498
  55%|█████▌ | 481/869 [00:05<00:04, 94.52it/s]
1499
+
1500
  57%|█████▋ | 491/869 [00:05<00:04, 91.18it/s]
1501
+
1502
  58%|█████▊ | 501/869 [00:05<00:04, 91.64it/s]
1503
+
1504
  59%|█████▉ | 511/869 [00:05<00:03, 89.94it/s]
1505
+
1506
  60%|█████▉ | 521/869 [00:05<00:03, 92.20it/s]
1507
+
1508
  61%|██████ | 531/869 [00:05<00:03, 88.44it/s]
1509
+
1510
  62%|██████▏ | 540/869 [00:05<00:03, 87.88it/s]
1511
+
1512
  63%|██████▎ | 550/869 [00:05<00:03, 91.25it/s]
1513
+
1514
  64%|██████▍ | 560/869 [00:06<00:03, 91.98it/s]
1515
+
1516
  66%|██████▌ | 570/869 [00:06<00:03, 92.01it/s]
1517
+
1518
  67%|██████▋ | 580/869 [00:06<00:03, 91.89it/s]
1519
+
1520
  68%|██████▊ | 590/869 [00:06<00:03, 92.24it/s]
1521
+
1522
  69%|██████▉ | 601/869 [00:06<00:02, 94.99it/s]
1523
+
1524
  70%|███████ | 611/869 [00:06<00:02, 93.48it/s]
1525
+
1526
  71%|███████▏ | 621/869 [00:06<00:02, 93.22it/s]
1527
+
1528
  73%|███████▎ | 631/869 [00:06<00:02, 92.67it/s]
1529
+
1530
  74%|███████▍ | 641/869 [00:06<00:02, 91.21it/s]
1531
+
1532
  75%|███████▍ | 651/869 [00:07<00:02, 91.71it/s]
1533
+
1534
  76%|███████▌ | 661/869 [00:07<00:02, 91.18it/s]
1535
+
1536
  77%|███████▋ | 671/869 [00:07<00:02, 93.08it/s]
1537
+
1538
  78%|███████▊ | 681/869 [00:07<00:02, 87.21it/s]
1539
+
1540
  80%|███████▉ | 691/869 [00:07<00:01, 90.56it/s]
1541
+
1542
  81%|████████ | 701/869 [00:07<00:01, 91.69it/s]
1543
+
1544
  82%|████████▏ | 711/869 [00:07<00:01, 91.90it/s]
1545
+
1546
  83%|████████▎ | 721/869 [00:07<00:01, 91.99it/s]
1547
+
1548
  84%|████████▍ | 731/869 [00:07<00:01, 92.01it/s]
1549
+
1550
  85%|████████▌ | 741/869 [00:08<00:01, 90.94it/s]
1551
+
1552
  86%|████████▋ | 751/869 [00:08<00:01, 90.11it/s]
1553
+
1554
  88%|████████▊ | 761/869 [00:08<00:01, 91.32it/s]
1555
+
1556
  89%|████████▊ | 771/869 [00:08<00:01, 89.23it/s]
1557
+
1558
  90%|████████▉ | 780/869 [00:08<00:01, 84.09it/s]
1559
+
1560
  91%|█████████ | 790/869 [00:08<00:00, 87.41it/s]
1561
+
1562
  92%|█████████▏| 800/869 [00:08<00:00, 89.24it/s]
1563
+
1564
  93%|█████████▎| 809/869 [00:08<00:00, 89.42it/s]
1565
+
1566
  94%|█████████▍| 819/869 [00:08<00:00, 90.02it/s]
1567
+
1568
  95%|█████████▌| 829/869 [00:09<00:00, 89.93it/s]
1569
+
1570
  97%|█████████▋| 839/869 [00:09<00:00, 90.80it/s]
1571
+
1572
  98%|█████████▊| 849/869 [00:09<00:00, 93.15it/s]
1573
+
1574
  99%|█████████▉| 859/869 [00:09<00:00, 93.72it/s]
1575
+
1576
 
1577
+
1578
 
1579
  20%|██ | 986/4930 [04:01<14:05, 4.66it/s]
1580
+
1581
+
1582
  [INFO|trainer.py:3503] 2024-09-05 09:24:56,032 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-986
1583
+ [INFO|configuration_utils.py:472] 2024-09-05 09:24:56,033 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-986/config.json
1584
+ [INFO|modeling_utils.py:2799] 2024-09-05 09:24:56,916 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-986/model.safetensors
1585
+ [INFO|tokenization_utils_base.py:2684] 2024-09-05 09:24:56,917 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-986/tokenizer_config.json
1586
+ [INFO|tokenization_utils_base.py:2693] 2024-09-05 09:24:56,917 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-986/special_tokens_map.json
1587
+ [INFO|tokenization_utils_base.py:2684] 2024-09-05 09:24:58,668 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1588
+ [INFO|tokenization_utils_base.py:2693] 2024-09-05 09:24:58,668 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1589
+
1590
  20%|██ | 987/4930 [04:04<5:28:46, 5.00s/it]
1591
  20%|██ | 988/4930 [04:04<3:54:01, 3.56s/it]
1592
  20%|██ | 989/4930 [04:04<2:48:43, 2.57s/it]
1593
  20%|██ | 990/4930 [04:05<2:02:21, 1.86s/it]
1594
  20%|██ | 991/4930 [04:05<1:29:01, 1.36s/it]
1595
  20%|██ | 992/4930 [04:05<1:06:06, 1.01s/it]
1596
  20%|██ | 993/4930 [04:05<50:20, 1.30it/s]
1597
  20%|██ | 994/4930 [04:05<40:45, 1.61it/s]
1598
  20%|██ | 995/4930 [04:06<32:32, 2.02it/s]
1599
  20%|██ | 996/4930 [04:06<25:58, 2.52it/s]
1600
  20%|██ | 997/4930 [04:06<21:45, 3.01it/s]
1601
  20%|██ | 998/4930 [04:06<19:53, 3.29it/s]
1602
  20%|██ | 999/4930 [04:06<18:41, 3.51it/s]
1603
  20%|██ | 1000/4930 [04:07<17:36, 3.72it/s]
1604
 
1605
  20%|██ | 1000/4930 [04:07<17:36, 3.72it/s]
1606
  20%|██ | 1001/4930 [04:07<16:27, 3.98it/s]
1607
  20%|██ | 1002/4930 [04:07<15:21, 4.26it/s]
1608
  20%|██ | 1003/4930 [04:07<14:54, 4.39it/s]
1609
  20%|██ | 1004/4930 [04:08<14:47, 4.42it/s]
1610
  20%|██ | 1005/4930 [04:08<15:23, 4.25it/s]
1611
  20%|██ | 1006/4930 [04:08<14:31, 4.50it/s]
1612
  20%|██ | 1007/4930 [04:08<13:46, 4.75it/s]
1613
  20%|██ | 1008/4930 [04:08<13:10, 4.96it/s]
1614
  20%|██ | 1009/4930 [04:09<13:09, 4.97it/s]
1615
  20%|██ | 1010/4930 [04:09<13:30, 4.84it/s]
1616
  21%|██ | 1011/4930 [04:09<13:02, 5.01it/s]
1617
  21%|██ | 1012/4930 [04:09<13:13, 4.94it/s]
1618
  21%|██ | 1013/4930 [04:09<12:42, 5.14it/s]
1619
  21%|██ | 1014/4930 [04:10<13:08, 4.96it/s]
1620
  21%|██ | 1015/4930 [04:10<13:59, 4.66it/s]
1621
  21%|██ | 1016/4930 [04:10<15:17, 4.26it/s]
1622
  21%|██ | 1017/4930 [04:10<16:39, 3.92it/s]
1623
  21%|██ | 1018/4930 [04:11<15:21, 4.24it/s]
1624
  21%|██ | 1019/4930 [04:11<15:08, 4.30it/s]
1625
  21%|██ | 1020/4930 [04:11<15:30, 4.20it/s]
1626
  21%|██ | 1021/4930 [04:11<15:04, 4.32it/s]
1627
  21%|██ | 1022/4930 [04:11<14:46, 4.41it/s]
1628
  21%|██ | 1023/4930 [04:12<13:30, 4.82it/s]
1629
  21%|██ | 1024/4930 [04:12<13:16, 4.90it/s]
1630
  21%|██ | 1025/4930 [04:12<13:31, 4.81it/s]
1631
  21%|██ | 1026/4930 [04:12<12:34, 5.18it/s]
1632
  21%|██ | 1027/4930 [04:12<12:02, 5.40it/s]
1633
  21%|██ | 1028/4930 [04:13<13:02, 4.99it/s]
1634
  21%|██ | 1029/4930 [04:13<14:08, 4.60it/s]
1635
  21%|██ | 1030/4930 [04:13<13:57, 4.66it/s]
1636
  21%|██ | 1031/4930 [04:13<13:53, 4.68it/s]
1637
  21%|██ | 1032/4930 [04:13<12:53, 5.04it/s]
1638
  21%|██ | 1033/4930 [04:14<13:22, 4.86it/s]
1639
  21%|██ | 1034/4930 [04:14<12:51, 5.05it/s]
1640
  21%|██ | 1035/4930 [04:14<14:24, 4.51it/s]
1641
  21%|██ | 1036/4930 [04:14<15:16, 4.25it/s]
1642
  21%|██ | 1037/4930 [04:15<13:43, 4.73it/s]
1643
  21%|██ | 1038/4930 [04:15<15:57, 4.06it/s]
1644
  21%|██ | 1039/4930 [04:15<15:29, 4.19it/s]
1645
  21%|██ | 1040/4930 [04:15<16:49, 3.85it/s]
1646
  21%|██ | 1041/4930 [04:16<18:38, 3.48it/s]
1647
  21%|██ | 1042/4930 [04:16<20:10, 3.21it/s]
1648
  21%|██ | 1043/4930 [04:16<18:25, 3.52it/s]
1649
  21%|██ | 1044/4930 [04:17<16:44, 3.87it/s]
1650
  21%|██ | 1045/4930 [04:17<15:45, 4.11it/s]
1651
  21%|██ | 1046/4930 [04:17<14:07, 4.59it/s]
1652
  21%|██ | 1047/4930 [04:17<14:32, 4.45it/s]
1653
  21%|██▏ | 1048/4930 [04:17<14:11, 4.56it/s]
1654
  21%|██▏ | 1049/4930 [04:18<13:43, 4.72it/s]
1655
  21%|██▏ | 1050/4930 [04:18<14:26, 4.48it/s]
1656
  21%|██▏ | 1051/4930 [04:18<15:49, 4.09it/s]
1657
  21%|██▏ | 1052/4930 [04:18<16:58, 3.81it/s]
1658
  21%|██▏ | 1053/4930 [04:19<15:44, 4.10it/s]
1659
  21%|██▏ | 1054/4930 [04:19<14:31, 4.45it/s]
1660
  21%|██▏ | 1055/4930 [04:19<14:22, 4.49it/s]
1661
  21%|██▏ | 1056/4930 [04:19<13:29, 4.79it/s]
1662
  21%|██▏ | 1057/4930 [04:19<14:02, 4.60it/s]
1663
  21%|██▏ | 1058/4930 [04:20<13:27, 4.80it/s]
1664
  21%|██▏ | 1059/4930 [04:20<13:52, 4.65it/s]
1665
  22%|██▏ | 1060/4930 [04:20<13:38, 4.73it/s]
1666
  22%|██▏ | 1061/4930 [04:20<13:32, 4.76it/s]
1667
  22%|██▏ | 1062/4930 [04:20<13:04, 4.93it/s]
1668
  22%|██▏ | 1063/4930 [04:21<12:29, 5.16it/s]
1669
  22%|██▏ | 1064/4930 [04:21<12:39, 5.09it/s]
1670
  22%|██▏ | 1065/4930 [04:21<15:37, 4.12it/s]
1671
  22%|██▏ | 1066/4930 [04:21<16:14, 3.97it/s]
1672
  22%|██▏ | 1067/4930 [04:22<16:46, 3.84it/s]
1673
  22%|██▏ | 1068/4930 [04:22<17:57, 3.58it/s]
1674
  22%|██▏ | 1069/4930 [04:22<16:45, 3.84it/s]
1675
  22%|██▏ | 1070/4930 [04:23<17:38, 3.65it/s]
1676
  22%|██▏ | 1071/4930 [04:23<17:03, 3.77it/s]
1677
  22%|██▏ | 1072/4930 [04:23<16:51, 3.81it/s]
1678
  22%|██▏ | 1073/4930 [04:23<15:52, 4.05it/s]
1679
  22%|██▏ | 1074/4930 [04:23<14:54, 4.31it/s]
1680
  22%|██▏ | 1075/4930 [04:24<19:44, 3.26it/s]
1681
  22%|██▏ | 1076/4930 [04:24<17:08, 3.75it/s]
1682
  22%|██▏ | 1077/4930 [04:24<16:55, 3.79it/s]
1683
  22%|██▏ | 1078/4930 [04:25<16:37, 3.86it/s]
1684
  22%|██▏ | 1079/4930 [04:25<15:05, 4.25it/s]
1685
  22%|██▏ | 1080/4930 [04:25<14:09, 4.53it/s]
1686
  22%|██▏ | 1081/4930 [04:25<13:33, 4.73it/s]
1687
  22%|██▏ | 1082/4930 [04:25<13:02, 4.92it/s]
1688
  22%|██▏ | 1083/4930 [04:26<12:58, 4.94it/s]
1689
  22%|██▏ | 1084/4930 [04:26<12:21, 5.19it/s]
1690
  22%|██▏ | 1085/4930 [04:26<12:53, 4.97it/s]
1691
  22%|██▏ | 1086/4930 [04:26<14:28, 4.43it/s]
1692
  22%|██▏ | 1087/4930 [04:26<12:55, 4.95it/s]
1693
  22%|██▏ | 1088/4930 [04:27<12:50, 4.99it/s]
1694
  22%|██▏ | 1089/4930 [04:27<13:37, 4.70it/s]
1695
  22%|██▏ | 1090/4930 [04:27<13:45, 4.65it/s]
1696
  22%|██▏ | 1091/4930 [04:27<12:58, 4.93it/s]
1697
  22%|██▏ | 1092/4930 [04:27<12:39, 5.06it/s]
1698
  22%|██▏ | 1093/4930 [04:28<12:27, 5.13it/s]
1699
  22%|██▏ | 1094/4930 [04:28<12:13, 5.23it/s]
1700
  22%|██▏ | 1095/4930 [04:28<13:05, 4.88it/s]
1701
  22%|██▏ | 1096/4930 [04:28<12:14, 5.22it/s]
1702
  22%|██▏ | 1097/4930 [04:28<13:05, 4.88it/s]
1703
  22%|██▏ | 1098/4930 [04:29<13:24, 4.76it/s]
1704
  22%|██▏ | 1099/4930 [04:29<11:51, 5.39it/s]
1705
  22%|██▏ | 1100/4930 [04:29<12:06, 5.28it/s]
1706
  22%|██▏ | 1101/4930 [04:29<12:38, 5.05it/s]
1707
  22%|██▏ | 1102/4930 [04:29<12:53, 4.95it/s]
1708
  22%|██▏ | 1103/4930 [04:30<14:12, 4.49it/s]
1709
  22%|██▏ | 1104/4930 [04:30<13:44, 4.64it/s]
1710
  22%|██▏ | 1105/4930 [04:30<15:35, 4.09it/s]
1711
  22%|██▏ | 1106/4930 [04:30<14:36, 4.36it/s]
1712
  22%|██▏ | 1107/4930 [04:30<13:16, 4.80it/s]
1713
  22%|██▏ | 1108/4930 [04:31<13:00, 4.90it/s]
1714
  22%|██▏ | 1109/4930 [04:31<12:48, 4.97it/s]
1715
  23%|██▎ | 1110/4930 [04:31<14:17, 4.45it/s]
1716
  23%|██▎ | 1111/4930 [04:31<13:07, 4.85it/s]
1717
  23%|██▎ | 1112/4930 [04:32<13:40, 4.65it/s]
1718
  23%|██▎ | 1113/4930 [04:32<13:27, 4.73it/s]
1719
  23%|██▎ | 1114/4930 [04:32<15:15, 4.17it/s]
1720
  23%|██▎ | 1115/4930 [04:32<13:47, 4.61it/s]
1721
  23%|██▎ | 1116/4930 [04:32<13:23, 4.75it/s]
1722
  23%|██▎ | 1117/4930 [04:33<13:20, 4.77it/s]
1723
  23%|██▎ | 1118/4930 [04:33<13:29, 4.71it/s]
1724
  23%|██▎ | 1119/4930 [04:33<13:02, 4.87it/s]
1725
  23%|██▎ | 1120/4930 [04:33<13:50, 4.59it/s]
1726
  23%|██▎ | 1121/4930 [04:34<16:34, 3.83it/s]
1727
  23%|██▎ | 1122/4930 [04:34<14:30, 4.38it/s]
1728
  23%|██▎ | 1123/4930 [04:34<13:18, 4.77it/s]
1729
  23%|██▎ | 1124/4930 [04:34<14:32, 4.36it/s]
1730
  23%|██▎ | 1125/4930 [04:35<17:48, 3.56it/s]
1731
  23%|██▎ | 1126/4930 [04:35<17:11, 3.69it/s]
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 1.394320679130096e+16,
4
+ "train_loss": 0.0030765269683407886,
5
+ "train_runtime": 1249.6681,
6
+ "train_samples": 32232,
7
+ "train_samples_per_second": 257.924,
8
+ "train_steps_per_second": 4.033
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.930276087973795,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-2016",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 5040,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.9920634920634921,
13
+ "grad_norm": 0.06281786412000656,
14
+ "learning_rate": 4.503968253968254e-05,
15
+ "loss": 0.0189,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 1.0,
20
+ "eval_accuracy": 0.9983953339100828,
21
+ "eval_f1": 0.9040358744394619,
22
+ "eval_loss": 0.00518822530284524,
23
+ "eval_precision": 0.8712186689714779,
24
+ "eval_recall": 0.9394221808014911,
25
+ "eval_runtime": 13.2131,
26
+ "eval_samples_per_second": 525.689,
27
+ "eval_steps_per_second": 65.768,
28
+ "step": 504
29
+ },
30
+ {
31
+ "epoch": 1.9841269841269842,
32
+ "grad_norm": 0.20689290761947632,
33
+ "learning_rate": 4.007936507936508e-05,
34
+ "loss": 0.0047,
35
+ "step": 1000
36
+ },
37
+ {
38
+ "epoch": 2.0,
39
+ "eval_accuracy": 0.9986883598917199,
40
+ "eval_f1": 0.9244402985074627,
41
+ "eval_loss": 0.004834321793168783,
42
+ "eval_precision": 0.9253034547152195,
43
+ "eval_recall": 0.923578751164958,
44
+ "eval_runtime": 13.2434,
45
+ "eval_samples_per_second": 524.487,
46
+ "eval_steps_per_second": 65.618,
47
+ "step": 1008
48
+ },
49
+ {
50
+ "epoch": 2.9761904761904763,
51
+ "grad_norm": 0.02256501279771328,
52
+ "learning_rate": 3.511904761904762e-05,
53
+ "loss": 0.0027,
54
+ "step": 1500
55
+ },
56
+ {
57
+ "epoch": 3.0,
58
+ "eval_accuracy": 0.9986255686099406,
59
+ "eval_f1": 0.9239384041063929,
60
+ "eval_loss": 0.005881821736693382,
61
+ "eval_precision": 0.9252336448598131,
62
+ "eval_recall": 0.9226467847157502,
63
+ "eval_runtime": 13.1715,
64
+ "eval_samples_per_second": 527.351,
65
+ "eval_steps_per_second": 65.976,
66
+ "step": 1512
67
+ },
68
+ {
69
+ "epoch": 3.9682539682539684,
70
+ "grad_norm": 0.0326182059943676,
71
+ "learning_rate": 3.0158730158730158e-05,
72
+ "loss": 0.0015,
73
+ "step": 2000
74
+ },
75
+ {
76
+ "epoch": 4.0,
77
+ "eval_accuracy": 0.9987162671280663,
78
+ "eval_f1": 0.930276087973795,
79
+ "eval_loss": 0.0064844791777431965,
80
+ "eval_precision": 0.9342105263157895,
81
+ "eval_recall": 0.9263746505125815,
82
+ "eval_runtime": 13.5939,
83
+ "eval_samples_per_second": 510.963,
84
+ "eval_steps_per_second": 63.926,
85
+ "step": 2016
86
+ },
87
+ {
88
+ "epoch": 4.9603174603174605,
89
+ "grad_norm": 0.1600140929222107,
90
+ "learning_rate": 2.5198412698412697e-05,
91
+ "loss": 0.0011,
92
+ "step": 2500
93
+ },
94
+ {
95
+ "epoch": 5.0,
96
+ "eval_accuracy": 0.9986116149917673,
97
+ "eval_f1": 0.923076923076923,
98
+ "eval_loss": 0.007346163038164377,
99
+ "eval_precision": 0.9072907290729073,
100
+ "eval_recall": 0.9394221808014911,
101
+ "eval_runtime": 13.3438,
102
+ "eval_samples_per_second": 520.543,
103
+ "eval_steps_per_second": 65.124,
104
+ "step": 2520
105
+ },
106
+ {
107
+ "epoch": 5.9523809523809526,
108
+ "grad_norm": 0.09641193598508835,
109
+ "learning_rate": 2.023809523809524e-05,
110
+ "loss": 0.0005,
111
+ "step": 3000
112
+ },
113
+ {
114
+ "epoch": 6.0,
115
+ "eval_accuracy": 0.998444171573689,
116
+ "eval_f1": 0.9204281060958585,
117
+ "eval_loss": 0.009004838764667511,
118
+ "eval_precision": 0.9191449814126395,
119
+ "eval_recall": 0.9217148182665424,
120
+ "eval_runtime": 13.3195,
121
+ "eval_samples_per_second": 521.491,
122
+ "eval_steps_per_second": 65.243,
123
+ "step": 3024
124
+ },
125
+ {
126
+ "epoch": 6.944444444444445,
127
+ "grad_norm": 0.029784763231873512,
128
+ "learning_rate": 1.527777777777778e-05,
129
+ "loss": 0.0007,
130
+ "step": 3500
131
+ },
132
+ {
133
+ "epoch": 7.0,
134
+ "eval_accuracy": 0.9985767309463344,
135
+ "eval_f1": 0.9190432382704691,
136
+ "eval_loss": 0.008385799825191498,
137
+ "eval_precision": 0.9073569482288828,
138
+ "eval_recall": 0.9310344827586207,
139
+ "eval_runtime": 13.4485,
140
+ "eval_samples_per_second": 516.487,
141
+ "eval_steps_per_second": 64.617,
142
+ "step": 3528
143
+ },
144
+ {
145
+ "epoch": 7.936507936507937,
146
+ "grad_norm": 0.0010318646673113108,
147
+ "learning_rate": 1.0317460317460318e-05,
148
+ "loss": 0.0004,
149
+ "step": 4000
150
+ },
151
+ {
152
+ "epoch": 8.0,
153
+ "eval_accuracy": 0.9985558005190746,
154
+ "eval_f1": 0.9213793103448276,
155
+ "eval_loss": 0.008501913398504257,
156
+ "eval_precision": 0.9092558983666061,
157
+ "eval_recall": 0.9338303821062441,
158
+ "eval_runtime": 13.3613,
159
+ "eval_samples_per_second": 519.86,
160
+ "eval_steps_per_second": 65.039,
161
+ "step": 4032
162
+ },
163
+ {
164
+ "epoch": 8.928571428571429,
165
+ "grad_norm": 0.0005677491426467896,
166
+ "learning_rate": 5.357142857142857e-06,
167
+ "loss": 0.0003,
168
+ "step": 4500
169
+ },
170
+ {
171
+ "epoch": 9.0,
172
+ "eval_accuracy": 0.9987023135098931,
173
+ "eval_f1": 0.9270544783010157,
174
+ "eval_loss": 0.008021777495741844,
175
+ "eval_precision": 0.918572735590119,
176
+ "eval_recall": 0.9356943150046598,
177
+ "eval_runtime": 13.487,
178
+ "eval_samples_per_second": 515.014,
179
+ "eval_steps_per_second": 64.432,
180
+ "step": 4536
181
+ },
182
+ {
183
+ "epoch": 9.920634920634921,
184
+ "grad_norm": 0.0005077613168396056,
185
+ "learning_rate": 3.9682539682539683e-07,
186
+ "loss": 0.0002,
187
+ "step": 5000
188
+ },
189
+ {
190
+ "epoch": 10.0,
191
+ "eval_accuracy": 0.9986883598917199,
192
+ "eval_f1": 0.9278445883441258,
193
+ "eval_loss": 0.008253143168985844,
194
+ "eval_precision": 0.921028466483012,
195
+ "eval_recall": 0.934762348555452,
196
+ "eval_runtime": 13.7257,
197
+ "eval_samples_per_second": 506.057,
198
+ "eval_steps_per_second": 63.312,
199
+ "step": 5040
200
+ },
201
+ {
202
+ "epoch": 10.0,
203
+ "step": 5040,
204
+ "total_flos": 1.394320679130096e+16,
205
+ "train_loss": 0.0030765269683407886,
206
+ "train_runtime": 1249.6681,
207
+ "train_samples_per_second": 257.924,
208
+ "train_steps_per_second": 4.033
209
+ }
210
+ ],
211
+ "logging_steps": 500,
212
+ "max_steps": 5040,
213
+ "num_input_tokens_seen": 0,
214
+ "num_train_epochs": 10,
215
+ "save_steps": 500,
216
+ "stateful_callbacks": {
217
+ "TrainerControl": {
218
+ "args": {
219
+ "should_epoch_stop": false,
220
+ "should_evaluate": false,
221
+ "should_log": false,
222
+ "should_save": true,
223
+ "should_training_stop": true
224
+ },
225
+ "attributes": {}
226
+ }
227
+ },
228
+ "total_flos": 1.394320679130096e+16,
229
+ "train_batch_size": 32,
230
+ "trial_name": null,
231
+ "trial_params": null
232
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
3
+ size 5240
vocab.txt ADDED
The diff for this file is too large to render. See raw diff