output
This model is a fine-tuned version of PlanTL-GOB-ES/bsc-bio-ehr-es on the Rodrigo1771/cantemist-85-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0496
- Precision: 0.8399
- Recall: 0.8618
- F1: 0.8507
- Accuracy: 0.9917
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0542 | 1.0 | 511 | 0.0271 | 0.7485 | 0.7972 | 0.7721 | 0.9895 |
0.0184 | 2.0 | 1022 | 0.0277 | 0.7897 | 0.8519 | 0.8196 | 0.9906 |
0.0103 | 3.0 | 1533 | 0.0305 | 0.8238 | 0.8488 | 0.8361 | 0.9914 |
0.0058 | 4.0 | 2044 | 0.0320 | 0.8197 | 0.8539 | 0.8364 | 0.9913 |
0.0041 | 5.0 | 2555 | 0.0374 | 0.8397 | 0.8417 | 0.8407 | 0.9917 |
0.0026 | 6.0 | 3066 | 0.0427 | 0.8368 | 0.8503 | 0.8435 | 0.9917 |
0.0015 | 7.0 | 3577 | 0.0451 | 0.8207 | 0.8598 | 0.8398 | 0.9912 |
0.0013 | 8.0 | 4088 | 0.0448 | 0.8318 | 0.8629 | 0.8471 | 0.9916 |
0.0007 | 9.0 | 4599 | 0.0496 | 0.8399 | 0.8618 | 0.8507 | 0.9917 |
0.0006 | 10.0 | 5110 | 0.0503 | 0.8399 | 0.8618 | 0.8507 | 0.9916 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 104
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Rodrigo1771/bsc-bio-ehr-es-cantemist-word2vec-85-ner
Base model
PlanTL-GOB-ES/bsc-bio-ehr-esDataset used to train Rodrigo1771/bsc-bio-ehr-es-cantemist-word2vec-85-ner
Evaluation results
- Precision on Rodrigo1771/cantemist-85-nervalidation set self-reported0.840
- Recall on Rodrigo1771/cantemist-85-nervalidation set self-reported0.862
- F1 on Rodrigo1771/cantemist-85-nervalidation set self-reported0.851
- Accuracy on Rodrigo1771/cantemist-85-nervalidation set self-reported0.992