Rodrigo1771
commited on
Model save
Browse files- README.md +102 -0
- model.safetensors +1 -1
- tb/events.out.tfevents.1725572459.df0b2d2cc7fe.2457.0 +2 -2
- train.log +13 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- cantemist-85-ner
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
- accuracy
|
14 |
+
model-index:
|
15 |
+
- name: output
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Token Classification
|
19 |
+
type: token-classification
|
20 |
+
dataset:
|
21 |
+
name: cantemist-85-ner
|
22 |
+
type: cantemist-85-ner
|
23 |
+
config: CantemistNer
|
24 |
+
split: validation
|
25 |
+
args: CantemistNer
|
26 |
+
metrics:
|
27 |
+
- name: Precision
|
28 |
+
type: precision
|
29 |
+
value: 0.8399232245681382
|
30 |
+
- name: Recall
|
31 |
+
type: recall
|
32 |
+
value: 0.8617565970854667
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.8506998444790046
|
36 |
+
- name: Accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 0.9916486929514279
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# output
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the cantemist-85-ner dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0503
|
49 |
+
- Precision: 0.8399
|
50 |
+
- Recall: 0.8618
|
51 |
+
- F1: 0.8507
|
52 |
+
- Accuracy: 0.9916
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 32
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- gradient_accumulation_steps: 2
|
76 |
+
- total_train_batch_size: 64
|
77 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
+
- lr_scheduler_type: linear
|
79 |
+
- num_epochs: 10.0
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
84 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
85 |
+
| 0.0542 | 1.0 | 511 | 0.0271 | 0.7485 | 0.7972 | 0.7721 | 0.9895 |
|
86 |
+
| 0.0184 | 2.0 | 1022 | 0.0277 | 0.7897 | 0.8519 | 0.8196 | 0.9906 |
|
87 |
+
| 0.0103 | 3.0 | 1533 | 0.0305 | 0.8238 | 0.8488 | 0.8361 | 0.9914 |
|
88 |
+
| 0.0058 | 4.0 | 2044 | 0.0320 | 0.8197 | 0.8539 | 0.8364 | 0.9913 |
|
89 |
+
| 0.0041 | 5.0 | 2555 | 0.0374 | 0.8397 | 0.8417 | 0.8407 | 0.9917 |
|
90 |
+
| 0.0026 | 6.0 | 3066 | 0.0427 | 0.8368 | 0.8503 | 0.8435 | 0.9917 |
|
91 |
+
| 0.0015 | 7.0 | 3577 | 0.0451 | 0.8207 | 0.8598 | 0.8398 | 0.9912 |
|
92 |
+
| 0.0013 | 8.0 | 4088 | 0.0448 | 0.8318 | 0.8629 | 0.8471 | 0.9916 |
|
93 |
+
| 0.0007 | 9.0 | 4599 | 0.0496 | 0.8399 | 0.8618 | 0.8507 | 0.9917 |
|
94 |
+
| 0.0006 | 10.0 | 5110 | 0.0503 | 0.8399 | 0.8618 | 0.8507 | 0.9916 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.44.2
|
100 |
+
- Pytorch 2.4.0+cu121
|
101 |
+
- Datasets 2.21.0
|
102 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 496244100
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bcf657b88b0dd59f55d29d601a96c83fca85d03e9ca0df4840c94ba732e80d5
|
3 |
size 496244100
|
tb/events.out.tfevents.1725572459.df0b2d2cc7fe.2457.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30cc8f8f5c7e479fbbf1f9005b6a57db7e63db43eb4cdcd87f01c1406427db25
|
3 |
+
size 12409
|
train.log
CHANGED
@@ -1549,3 +1549,16 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1549 |
[INFO|trainer.py:2632] 2024-09-05 22:04:32,625 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4599 (score: 0.8506998444790046).
|
1550 |
|
1551 |
|
1552 |
[INFO|trainer.py:4283] 2024-09-05 22:04:32,815 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1549 |
[INFO|trainer.py:2632] 2024-09-05 22:04:32,625 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4599 (score: 0.8506998444790046).
|
1550 |
|
1551 |
|
1552 |
[INFO|trainer.py:4283] 2024-09-05 22:04:32,815 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
|
1553 |
+
[INFO|trainer.py:3503] 2024-09-05 22:04:37,739 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1554 |
+
[INFO|configuration_utils.py:472] 2024-09-05 22:04:37,741 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1555 |
+
[INFO|modeling_utils.py:2799] 2024-09-05 22:04:39,388 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1556 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-05 22:04:39,389 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1557 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-05 22:04:39,390 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1558 |
+
[INFO|trainer.py:3503] 2024-09-05 22:04:39,437 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1559 |
+
[INFO|configuration_utils.py:472] 2024-09-05 22:04:39,438 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1560 |
+
[INFO|modeling_utils.py:2799] 2024-09-05 22:04:40,705 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1561 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-05 22:04:40,706 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1562 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-05 22:04:40,706 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1563 |
+
{'eval_loss': 0.05025585740804672, 'eval_precision': 0.8399232245681382, 'eval_recall': 0.8617565970854667, 'eval_f1': 0.8506998444790046, 'eval_accuracy': 0.9916486929514279, 'eval_runtime': 16.4037, 'eval_samples_per_second': 448.314, 'eval_steps_per_second': 56.085, 'epoch': 10.0}
|
1564 |
+
{'train_runtime': 1413.3317, 'train_samples_per_second': 231.191, 'train_steps_per_second': 3.616, 'train_loss': 0.009731636565258824, 'epoch': 10.0}
|
1565 |
+
|