output
This model is a fine-tuned version of PlanTL-GOB-ES/bsc-bio-ehr-es on the Rodrigo1771/drugtemist-85-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0048
- Precision: 0.9461
- Recall: 0.9522
- F1: 0.9492
- Accuracy: 0.9989
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 466 | 0.0031 | 0.9292 | 0.9412 | 0.9352 | 0.9989 |
0.0199 | 2.0 | 932 | 0.0031 | 0.9212 | 0.9568 | 0.9387 | 0.9989 |
0.0026 | 3.0 | 1398 | 0.0040 | 0.9365 | 0.9357 | 0.9361 | 0.9989 |
0.0011 | 4.0 | 1864 | 0.0052 | 0.9400 | 0.9219 | 0.9309 | 0.9987 |
0.001 | 5.0 | 2330 | 0.0048 | 0.9461 | 0.9522 | 0.9492 | 0.9989 |
0.0005 | 6.0 | 2796 | 0.0046 | 0.9376 | 0.9522 | 0.9448 | 0.9989 |
0.0004 | 7.0 | 3262 | 0.0050 | 0.9328 | 0.9568 | 0.9446 | 0.9990 |
0.0002 | 8.0 | 3728 | 0.0055 | 0.9423 | 0.9449 | 0.9436 | 0.9989 |
0.0001 | 9.0 | 4194 | 0.0057 | 0.9399 | 0.9485 | 0.9442 | 0.9989 |
0.0001 | 10.0 | 4660 | 0.0058 | 0.9348 | 0.9485 | 0.9416 | 0.9989 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 111
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Rodrigo1771/bsc-bio-ehr-es-drugtemist-word2vec-85-ner
Base model
PlanTL-GOB-ES/bsc-bio-ehr-esDataset used to train Rodrigo1771/bsc-bio-ehr-es-drugtemist-word2vec-85-ner
Evaluation results
- Precision on Rodrigo1771/drugtemist-85-nervalidation set self-reported0.946
- Recall on Rodrigo1771/drugtemist-85-nervalidation set self-reported0.952
- F1 on Rodrigo1771/drugtemist-85-nervalidation set self-reported0.949
- Accuracy on Rodrigo1771/drugtemist-85-nervalidation set self-reported0.999