Rodrigo1771 commited on
Commit
3496b87
·
verified ·
1 Parent(s): 55ff23f

Training in progress, epoch 1

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
+ tags:
6
+ - token-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - Rodrigo1771/distemist-85-ner
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ - accuracy
15
+ model-index:
16
+ - name: output
17
+ results:
18
+ - task:
19
+ name: Token Classification
20
+ type: token-classification
21
+ dataset:
22
+ name: Rodrigo1771/distemist-85-ner
23
+ type: Rodrigo1771/distemist-85-ner
24
+ config: DisTEMIST NER
25
+ split: validation
26
+ args: DisTEMIST NER
27
+ metrics:
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.803175344384777
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.8048666354702855
34
+ - name: F1
35
+ type: f1
36
+ value: 0.8040201005025126
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.9764853694371592
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # output
46
+
47
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/distemist-85-ner dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.1424
50
+ - Precision: 0.8032
51
+ - Recall: 0.8049
52
+ - F1: 0.8040
53
+ - Accuracy: 0.9765
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 5e-05
73
+ - train_batch_size: 32
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 2
77
+ - total_train_batch_size: 64
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 10.0
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | No log | 0.9990 | 499 | 0.0739 | 0.7271 | 0.7953 | 0.7596 | 0.9731 |
87
+ | 0.105 | 2.0 | 999 | 0.0908 | 0.7436 | 0.7890 | 0.7656 | 0.9729 |
88
+ | 0.0448 | 2.9990 | 1498 | 0.0930 | 0.7676 | 0.7990 | 0.7830 | 0.9744 |
89
+ | 0.0255 | 4.0 | 1998 | 0.1052 | 0.7806 | 0.7983 | 0.7894 | 0.9757 |
90
+ | 0.0164 | 4.9990 | 2497 | 0.1100 | 0.7756 | 0.8007 | 0.7879 | 0.9750 |
91
+ | 0.0112 | 6.0 | 2997 | 0.1266 | 0.7869 | 0.8124 | 0.7994 | 0.9768 |
92
+ | 0.0073 | 6.9990 | 3496 | 0.1288 | 0.7929 | 0.8009 | 0.7969 | 0.9763 |
93
+ | 0.0054 | 8.0 | 3996 | 0.1424 | 0.8032 | 0.8049 | 0.8040 | 0.9765 |
94
+ | 0.0038 | 8.9990 | 4495 | 0.1455 | 0.7901 | 0.8042 | 0.7971 | 0.9765 |
95
+ | 0.0028 | 9.9900 | 4990 | 0.1497 | 0.7898 | 0.8072 | 0.7984 | 0.9768 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.44.2
101
+ - Pytorch 2.4.0+cu121
102
+ - Datasets 2.21.0
103
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.98998998998999,
3
+ "eval_accuracy": 0.9764853694371592,
4
+ "eval_f1": 0.8040201005025126,
5
+ "eval_loss": 0.14244574308395386,
6
+ "eval_precision": 0.803175344384777,
7
+ "eval_recall": 0.8048666354702855,
8
+ "eval_runtime": 14.2417,
9
+ "eval_samples": 6810,
10
+ "eval_samples_per_second": 478.175,
11
+ "eval_steps_per_second": 59.825,
12
+ "predict_accuracy": 0.9760745138469196,
13
+ "predict_f1": 0.7984671441135821,
14
+ "predict_loss": 0.12913450598716736,
15
+ "predict_precision": 0.7908163265306123,
16
+ "predict_recall": 0.8062674448109617,
17
+ "predict_runtime": 28.8701,
18
+ "predict_samples_per_second": 506.199,
19
+ "predict_steps_per_second": 63.284,
20
+ "total_flos": 1.5071241212671032e+16,
21
+ "train_loss": 0.022475468706272407,
22
+ "train_runtime": 1385.1143,
23
+ "train_samples": 31947,
24
+ "train_samples_per_second": 230.645,
25
+ "train_steps_per_second": 3.603
26
+ }
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
3
+ "architectures": [
4
+ "RobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "finetuning_task": "ner",
11
+ "gradient_checkpointing": false,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "id2label": {
16
+ "0": "O",
17
+ "1": "B-FARMACO",
18
+ "2": "I-FARMACO"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "B-FARMACO": 1,
24
+ "I-FARMACO": 2,
25
+ "O": 0
26
+ },
27
+ "layer_norm_eps": 1e-05,
28
+ "max_position_embeddings": 514,
29
+ "model_type": "roberta",
30
+ "num_attention_heads": 12,
31
+ "num_hidden_layers": 12,
32
+ "pad_token_id": 1,
33
+ "position_embedding_type": "absolute",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.44.2",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 50262
39
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.98998998998999,
3
+ "eval_accuracy": 0.9764853694371592,
4
+ "eval_f1": 0.8040201005025126,
5
+ "eval_loss": 0.14244574308395386,
6
+ "eval_precision": 0.803175344384777,
7
+ "eval_recall": 0.8048666354702855,
8
+ "eval_runtime": 14.2417,
9
+ "eval_samples": 6810,
10
+ "eval_samples_per_second": 478.175,
11
+ "eval_steps_per_second": 59.825
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:411d5d3193996fda415850b6703d2f10e22a3e8288871b4ff25d76e44ac7ac11
3
+ size 496244100
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9760745138469196,
3
+ "predict_f1": 0.7984671441135821,
4
+ "predict_loss": 0.12913450598716736,
5
+ "predict_precision": 0.7908163265306123,
6
+ "predict_recall": 0.8062674448109617,
7
+ "predict_runtime": 28.8701,
8
+ "predict_samples_per_second": 506.199,
9
+ "predict_steps_per_second": 63.284
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tb/events.out.tfevents.1725576279.2a66098fac87.2185.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26ae516745ddff30692f4c665463f21acb32fb831f7fd631ed58c86455b7b8df
3
+ size 12158
tb/events.out.tfevents.1725577702.2a66098fac87.2185.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99c4e72fbff46ff4f2f01e01ca635b888064333c67fbc1e31ea417bc542ae659
3
+ size 560
tb/events.out.tfevents.1725577909.2a66098fac87.9264.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:819018489721b1569a2c7c0819b30388ca1b355762fd69229a7cdaaf57e06733
3
+ size 5645
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50261": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_len": 512,
52
+ "model_max_length": 512,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
train.log ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/4660 [00:00<?, ?it/s]
1
  0%| | 1/4660 [00:01<1:34:24, 1.22s/it]
2
  0%| | 2/4660 [00:01<51:16, 1.51it/s]
3
  0%| | 3/4660 [00:01<34:20, 2.26it/s]
4
  0%| | 4/4660 [00:01<25:37, 3.03it/s]
5
  0%| | 5/4660 [00:02<21:49, 3.55it/s]
6
  0%| | 6/4660 [00:02<19:39, 3.94it/s]
7
  0%| | 7/4660 [00:02<20:00, 3.87it/s]
8
  0%| | 8/4660 [00:02<19:47, 3.92it/s]
9
  0%| | 9/4660 [00:02<19:43, 3.93it/s]
10
  0%| | 10/4660 [00:03<17:45, 4.36it/s]
11
  0%| | 11/4660 [00:03<17:00, 4.55it/s]
12
  0%| | 12/4660 [00:03<17:36, 4.40it/s]
13
  0%| | 13/4660 [00:03<17:26, 4.44it/s]
14
  0%| | 14/4660 [00:04<20:38, 3.75it/s]
15
  0%| | 15/4660 [00:04<21:00, 3.69it/s]
16
  0%| | 16/4660 [00:04<19:19, 4.00it/s]
17
  0%| | 17/4660 [00:04<17:39, 4.38it/s]
18
  0%| | 18/4660 [00:05<20:50, 3.71it/s]
19
  0%| | 19/4660 [00:05<19:27, 3.97it/s]
20
  0%| | 20/4660 [00:05<18:28, 4.19it/s]
21
  0%| | 21/4660 [00:05<20:44, 3.73it/s]
22
  0%| | 22/4660 [00:06<19:03, 4.06it/s]
23
  0%| | 23/4660 [00:06<17:53, 4.32it/s]
24
  1%| | 24/4660 [00:06<17:54, 4.32it/s]
25
  1%| | 25/4660 [00:06<18:33, 4.16it/s]
26
  1%| | 26/4660 [00:07<17:33, 4.40it/s]
27
  1%| | 27/4660 [00:07<17:51, 4.32it/s]
28
  1%| | 28/4660 [00:07<16:34, 4.66it/s]
29
  1%| | 29/4660 [00:07<15:57, 4.83it/s]
30
  1%| | 30/4660 [00:07<16:07, 4.78it/s]
31
  1%| | 31/4660 [00:08<16:14, 4.75it/s]
32
  1%| | 32/4660 [00:08<16:14, 4.75it/s]
33
  1%| | 33/4660 [00:08<16:45, 4.60it/s]
34
  1%| | 34/4660 [00:08<19:39, 3.92it/s]
35
  1%| | 35/4660 [00:09<18:34, 4.15it/s]
36
  1%| | 36/4660 [00:09<18:26, 4.18it/s]
37
  1%| | 37/4660 [00:09<18:43, 4.12it/s]
38
  1%| | 38/4660 [00:09<20:40, 3.72it/s]
39
  1%| | 39/4660 [00:10<19:12, 4.01it/s]
40
  1%| | 40/4660 [00:10<18:31, 4.16it/s]
41
  1%| | 41/4660 [00:10<17:29, 4.40it/s]
42
  1%| | 42/4660 [00:10<19:12, 4.01it/s]
43
  1%| | 43/4660 [00:11<18:12, 4.23it/s]
44
  1%| | 44/4660 [00:11<21:29, 3.58it/s]
45
  1%| | 45/4660 [00:11<21:53, 3.51it/s]
46
  1%| | 46/4660 [00:11<20:42, 3.71it/s]
47
  1%| | 47/4660 [00:12<19:22, 3.97it/s]
48
  1%| | 48/4660 [00:12<23:12, 3.31it/s]
49
  1%| | 49/4660 [00:12<21:22, 3.60it/s]
50
  1%| | 50/4660 [00:12<19:14, 3.99it/s]
51
  1%| | 51/4660 [00:13<18:44, 4.10it/s]
52
  1%| | 52/4660 [00:13<17:39, 4.35it/s]
53
  1%| | 53/4660 [00:13<18:35, 4.13it/s]
54
  1%| | 54/4660 [00:13<18:55, 4.05it/s]
55
  1%| | 55/4660 [00:14<20:05, 3.82it/s]
56
  1%| | 56/4660 [00:14<21:45, 3.53it/s]
57
  1%| | 57/4660 [00:14<20:49, 3.68it/s]
58
  1%| | 58/4660 [00:15<20:21, 3.77it/s]
59
  1%|▏ | 59/4660 [00:15<19:43, 3.89it/s]
60
  1%|▏ | 60/4660 [00:15<19:56, 3.84it/s]
61
  1%|▏ | 61/4660 [00:15<19:42, 3.89it/s]
62
  1%|▏ | 62/4660 [00:16<19:03, 4.02it/s]
63
  1%|▏ | 63/4660 [00:16<18:41, 4.10it/s]
64
  1%|▏ | 64/4660 [00:16<18:09, 4.22it/s]
65
  1%|▏ | 65/4660 [00:16<18:14, 4.20it/s]
66
  1%|▏ | 66/4660 [00:16<18:04, 4.23it/s]
67
  1%|▏ | 67/4660 [00:17<17:33, 4.36it/s]
68
  1%|▏ | 68/4660 [00:17<17:10, 4.46it/s]
69
  1%|▏ | 69/4660 [00:17<18:06, 4.23it/s]
70
  2%|▏ | 70/4660 [00:17<18:00, 4.25it/s]
71
  2%|▏ | 71/4660 [00:18<16:22, 4.67it/s]
72
  2%|▏ | 72/4660 [00:18<15:20, 4.98it/s]
73
  2%|▏ | 73/4660 [00:18<16:40, 4.58it/s]
74
  2%|▏ | 74/4660 [00:18<16:15, 4.70it/s]
75
  2%|▏ | 75/4660 [00:18<16:16, 4.69it/s]
76
  2%|▏ | 76/4660 [00:19<16:27, 4.64it/s]
77
  2%|▏ | 77/4660 [00:19<17:08, 4.46it/s]
78
  2%|▏ | 78/4660 [00:19<18:20, 4.16it/s]
79
  2%|▏ | 79/4660 [00:19<19:21, 3.94it/s]
80
  2%|▏ | 80/4660 [00:20<21:07, 3.61it/s]
81
  2%|▏ | 81/4660 [00:20<19:12, 3.97it/s]
82
  2%|▏ | 82/4660 [00:20<18:12, 4.19it/s]
83
  2%|▏ | 83/4660 [00:20<17:32, 4.35it/s]
84
  2%|▏ | 84/4660 [00:21<17:42, 4.31it/s]
85
  2%|▏ | 85/4660 [00:21<17:29, 4.36it/s]
86
  2%|▏ | 86/4660 [00:21<16:29, 4.62it/s]
87
  2%|▏ | 87/4660 [00:21<18:52, 4.04it/s]
88
  2%|▏ | 88/4660 [00:21<16:59, 4.49it/s]
89
  2%|▏ | 89/4660 [00:22<18:24, 4.14it/s]
90
  2%|▏ | 90/4660 [00:22<20:54, 3.64it/s]
91
  2%|▏ | 91/4660 [00:23<24:11, 3.15it/s]
92
  2%|▏ | 92/4660 [00:23<21:45, 3.50it/s]
93
  2%|▏ | 93/4660 [00:23<22:19, 3.41it/s]
94
  2%|▏ | 94/4660 [00:23<19:40, 3.87it/s]
95
  2%|▏ | 95/4660 [00:24<19:48, 3.84it/s]
96
  2%|▏ | 96/4660 [00:24<17:48, 4.27it/s]
97
  2%|▏ | 97/4660 [00:24<19:11, 3.96it/s]
98
  2%|▏ | 98/4660 [00:24<22:58, 3.31it/s]
99
  2%|▏ | 99/4660 [00:25<22:14, 3.42it/s]
100
  2%|▏ | 100/4660 [00:25<19:49, 3.83it/s]
101
  2%|▏ | 101/4660 [00:25<25:31, 2.98it/s]
102
  2%|▏ | 102/4660 [00:26<26:36, 2.86it/s]
103
  2%|▏ | 103/4660 [00:26<23:54, 3.18it/s]
104
  2%|▏ | 104/4660 [00:26<22:52, 3.32it/s]
105
  2%|▏ | 105/4660 [00:27<21:54, 3.46it/s]
106
  2%|▏ | 106/4660 [00:27<20:32, 3.70it/s]
107
  2%|▏ | 107/4660 [00:27<18:56, 4.01it/s]
108
  2%|▏ | 108/4660 [00:27<19:02, 3.98it/s]
109
  2%|▏ | 109/4660 [00:27<19:34, 3.87it/s]
110
  2%|▏ | 110/4660 [00:28<20:13, 3.75it/s]
111
  2%|▏ | 111/4660 [00:28<20:10, 3.76it/s]
112
  2%|▏ | 112/4660 [00:28<22:03, 3.44it/s]
113
  2%|▏ | 113/4660 [00:29<20:01, 3.79it/s]
114
  2%|▏ | 114/4660 [00:29<18:18, 4.14it/s]
115
  2%|▏ | 115/4660 [00:29<17:37, 4.30it/s]
116
  2%|▏ | 116/4660 [00:29<18:08, 4.17it/s]
117
  3%|▎ | 117/4660 [00:29<18:09, 4.17it/s]
118
  3%|▎ | 118/4660 [00:30<17:44, 4.27it/s]
119
  3%|▎ | 119/4660 [00:30<17:01, 4.45it/s]
120
  3%|▎ | 120/4660 [00:30<18:03, 4.19it/s]
121
  3%|▎ | 121/4660 [00:31<22:14, 3.40it/s]
122
  3%|▎ | 122/4660 [00:31<18:58, 3.99it/s]
123
  3%|▎ | 123/4660 [00:31<17:39, 4.28it/s]
124
  3%|▎ | 124/4660 [00:31<18:21, 4.12it/s]
125
  3%|▎ | 125/4660 [00:32<20:21, 3.71it/s]
126
  3%|▎ | 126/4660 [00:32<19:01, 3.97it/s]
127
  3%|▎ | 127/4660 [00:32<19:01, 3.97it/s]
128
  3%|▎ | 128/4660 [00:33<25:02, 3.02it/s]
129
  3%|▎ | 129/4660 [00:33<24:47, 3.05it/s]
130
  3%|▎ | 130/4660 [00:33<22:15, 3.39it/s]
131
  3%|▎ | 131/4660 [00:33<19:59, 3.78it/s]
132
  3%|▎ | 132/4660 [00:33<18:21, 4.11it/s]
133
  3%|▎ | 133/4660 [00:34<17:37, 4.28it/s]
134
  3%|▎ | 134/4660 [00:34<16:23, 4.60it/s]
135
  3%|▎ | 135/4660 [00:34<19:48, 3.81it/s]
136
  3%|▎ | 136/4660 [00:34<18:55, 3.98it/s]
137
  3%|▎ | 137/4660 [00:35<20:53, 3.61it/s]
138
  3%|▎ | 138/4660 [00:35<19:36, 3.84it/s]
139
  3%|▎ | 139/4660 [00:35<18:25, 4.09it/s]
140
  3%|▎ | 140/4660 [00:35<17:29, 4.31it/s]
141
  3%|▎ | 141/4660 [00:36<17:08, 4.39it/s]
142
  3%|▎ | 142/4660 [00:36<17:51, 4.22it/s]
143
  3%|▎ | 143/4660 [00:36<18:51, 3.99it/s]
144
  3%|▎ | 144/4660 [00:36<17:07, 4.40it/s]
145
  3%|▎ | 145/4660 [00:37<27:46, 2.71it/s]
146
  3%|▎ | 146/4660 [00:37<26:18, 2.86it/s]
147
  3%|▎ | 147/4660 [00:38<22:38, 3.32it/s]
148
  3%|▎ | 148/4660 [00:38<20:50, 3.61it/s]
149
  3%|▎ | 149/4660 [00:38<19:53, 3.78it/s]
150
  3%|▎ | 150/4660 [00:38<18:28, 4.07it/s]
151
  3%|▎ | 151/4660 [00:38<17:53, 4.20it/s]
152
  3%|▎ | 152/4660 [00:39<18:02, 4.16it/s]
153
  3%|▎ | 153/4660 [00:39<19:24, 3.87it/s]
154
  3%|▎ | 154/4660 [00:39<20:03, 3.75it/s]
155
  3%|▎ | 155/4660 [00:39<19:18, 3.89it/s]
156
  3%|▎ | 156/4660 [00:40<18:15, 4.11it/s]
157
  3%|▎ | 157/4660 [00:40<17:25, 4.31it/s]
158
  3%|▎ | 158/4660 [00:40<18:31, 4.05it/s]
159
  3%|▎ | 159/4660 [00:40<18:12, 4.12it/s]
160
  3%|▎ | 160/4660 [00:41<25:45, 2.91it/s]
161
  3%|▎ | 161/4660 [00:41<22:53, 3.28it/s]
162
  3%|▎ | 162/4660 [00:42<23:45, 3.16it/s]
163
  3%|▎ | 163/4660 [00:42<24:15, 3.09it/s]
164
  4%|▎ | 164/4660 [00:42<22:14, 3.37it/s]
165
  4%|▎ | 165/4660 [00:42<19:54, 3.76it/s]
166
  4%|▎ | 166/4660 [00:42<17:49, 4.20it/s]
167
  4%|▎ | 167/4660 [00:43<17:15, 4.34it/s]
168
  4%|▎ | 168/4660 [00:43<16:43, 4.48it/s]
169
  4%|▎ | 169/4660 [00:43<18:37, 4.02it/s]
170
  4%|▎ | 170/4660 [00:43<17:49, 4.20it/s]
171
  4%|▎ | 171/4660 [00:44<21:50, 3.42it/s]
172
  4%|▎ | 172/4660 [00:44<20:03, 3.73it/s]
173
  4%|▎ | 173/4660 [00:45<29:51, 2.50it/s]
174
  4%|▎ | 174/4660 [00:45<26:06, 2.86it/s]
175
  4%|▍ | 175/4660 [00:45<24:26, 3.06it/s]
176
  4%|▍ | 176/4660 [00:45<22:17, 3.35it/s]
177
  4%|▍ | 177/4660 [00:46<20:35, 3.63it/s]
178
  4%|▍ | 178/4660 [00:46<20:38, 3.62it/s]
179
  4%|▍ | 179/4660 [00:46<20:16, 3.68it/s]
180
  4%|▍ | 180/4660 [00:47<21:00, 3.55it/s]
181
  4%|▍ | 181/4660 [00:47<20:15, 3.68it/s]
182
  4%|▍ | 182/4660 [00:47<21:45, 3.43it/s]
183
  4%|▍ | 183/4660 [00:47<20:07, 3.71it/s]
184
  4%|▍ | 184/4660 [00:48<18:09, 4.11it/s]
185
  4%|▍ | 185/4660 [00:48<16:50, 4.43it/s]
186
  4%|▍ | 186/4660 [00:48<18:14, 4.09it/s]
187
  4%|▍ | 187/4660 [00:48<17:38, 4.23it/s]
188
  4%|▍ | 188/4660 [00:48<16:53, 4.41it/s]
189
  4%|▍ | 189/4660 [00:49<16:06, 4.63it/s]
190
  4%|▍ | 190/4660 [00:49<15:06, 4.93it/s]
191
  4%|▍ | 191/4660 [00:49<17:09, 4.34it/s]
192
  4%|▍ | 192/4660 [00:49<17:16, 4.31it/s]
193
  4%|▍ | 193/4660 [00:50<19:17, 3.86it/s]
194
  4%|▍ | 194/4660 [00:50<19:16, 3.86it/s]
195
  4%|▍ | 195/4660 [00:50<19:39, 3.79it/s]
196
  4%|▍ | 196/4660 [00:51<20:57, 3.55it/s]
197
  4%|▍ | 197/4660 [00:51<19:27, 3.82it/s]
198
  4%|▍ | 198/4660 [00:51<20:08, 3.69it/s]
199
  4%|▍ | 199/4660 [00:51<20:15, 3.67it/s]
200
  4%|▍ | 200/4660 [00:51<18:11, 4.08it/s]
201
  4%|▍ | 201/4660 [00:52<17:03, 4.36it/s]
202
  4%|▍ | 202/4660 [00:52<15:46, 4.71it/s]
203
  4%|▍ | 203/4660 [00:52<17:26, 4.26it/s]
204
  4%|▍ | 204/4660 [00:52<17:39, 4.21it/s]
205
  4%|▍ | 205/4660 [00:53<17:49, 4.17it/s]
206
  4%|▍ | 206/4660 [00:53<17:01, 4.36it/s]
207
  4%|▍ | 207/4660 [00:53<19:51, 3.74it/s]
208
  4%|▍ | 208/4660 [00:53<17:27, 4.25it/s]
209
  4%|▍ | 209/4660 [00:54<18:04, 4.10it/s]
210
  5%|▍ | 210/4660 [00:54<17:50, 4.16it/s]
211
  5%|▍ | 211/4660 [00:54<23:08, 3.20it/s]
212
  5%|▍ | 212/4660 [00:55<22:53, 3.24it/s]
213
  5%|▍ | 213/4660 [00:55<20:12, 3.67it/s]
214
  5%|▍ | 214/4660 [00:55<17:57, 4.12it/s]
215
  5%|▍ | 215/4660 [00:55<17:20, 4.27it/s]
216
  5%|▍ | 216/4660 [00:55<18:25, 4.02it/s]
217
  5%|▍ | 217/4660 [00:56<16:47, 4.41it/s]
218
  5%|▍ | 218/4660 [00:56<18:09, 4.08it/s]
219
  5%|▍ | 219/4660 [00:56<16:55, 4.37it/s]
220
  5%|▍ | 220/4660 [00:56<17:04, 4.33it/s]
221
  5%|▍ | 221/4660 [00:57<16:34, 4.46it/s]
222
  5%|▍ | 222/4660 [00:57<18:02, 4.10it/s]
223
  5%|▍ | 223/4660 [00:57<17:44, 4.17it/s]
224
  5%|▍ | 224/4660 [00:57<16:55, 4.37it/s]
225
  5%|▍ | 225/4660 [00:57<15:56, 4.64it/s]
226
  5%|▍ | 226/4660 [00:58<15:52, 4.66it/s]
227
  5%|▍ | 227/4660 [00:58<19:42, 3.75it/s]
228
  5%|▍ | 228/4660 [00:58<18:53, 3.91it/s]
229
  5%|▍ | 229/4660 [00:59<19:43, 3.74it/s]
230
  5%|▍ | 230/4660 [00:59<19:11, 3.85it/s]
231
  5%|▍ | 231/4660 [00:59<17:37, 4.19it/s]
232
  5%|▍ | 232/4660 [00:59<18:03, 4.09it/s]
233
  5%|▌ | 233/4660 [00:59<16:43, 4.41it/s]
234
  5%|▌ | 234/4660 [01:00<16:36, 4.44it/s]
235
  5%|▌ | 235/4660 [01:00<16:11, 4.56it/s]
236
  5%|▌ | 236/4660 [01:00<16:56, 4.35it/s]
237
  5%|▌ | 237/4660 [01:01<25:56, 2.84it/s]
238
  5%|▌ | 238/4660 [01:01<23:02, 3.20it/s]
239
  5%|▌ | 239/4660 [01:01<21:23, 3.44it/s]
240
  5%|▌ | 240/4660 [01:02<21:35, 3.41it/s]
241
  5%|▌ | 241/4660 [01:02<23:04, 3.19it/s]
242
  5%|▌ | 242/4660 [01:02<20:12, 3.64it/s]
243
  5%|▌ | 243/4660 [01:02<19:45, 3.72it/s]
244
  5%|▌ | 244/4660 [01:03<17:13, 4.27it/s]
245
  5%|▌ | 245/4660 [01:03<19:53, 3.70it/s]
246
  5%|▌ | 246/4660 [01:03<21:04, 3.49it/s]
247
  5%|▌ | 247/4660 [01:03<20:00, 3.68it/s]
248
  5%|▌ | 248/4660 [01:04<19:46, 3.72it/s]
249
  5%|▌ | 249/4660 [01:04<18:03, 4.07it/s]
250
  5%|▌ | 250/4660 [01:04<17:19, 4.24it/s]
251
  5%|▌ | 251/4660 [01:04<18:34, 3.96it/s]
252
  5%|▌ | 252/4660 [01:05<18:59, 3.87it/s]
253
  5%|▌ | 253/4660 [01:05<17:01, 4.31it/s]
254
  5%|▌ | 254/4660 [01:05<17:06, 4.29it/s]
255
  5%|▌ | 255/4660 [01:05<16:51, 4.35it/s]
256
  5%|▌ | 256/4660 [01:06<17:18, 4.24it/s]
257
  6%|▌ | 257/4660 [01:06<17:30, 4.19it/s]
258
  6%|▌ | 258/4660 [01:06<17:11, 4.27it/s]
259
  6%|▌ | 259/4660 [01:06<16:27, 4.46it/s]
260
  6%|▌ | 260/4660 [01:06<16:39, 4.40it/s]
261
  6%|▌ | 261/4660 [01:07<15:55, 4.60it/s]
262
  6%|▌ | 262/4660 [01:07<16:32, 4.43it/s]
263
  6%|▌ | 263/4660 [01:07<19:06, 3.83it/s]
264
  6%|▌ | 264/4660 [01:08<20:06, 3.64it/s]
265
  6%|▌ | 265/4660 [01:08<21:50, 3.35it/s]
266
  6%|▌ | 266/4660 [01:08<20:52, 3.51it/s]
267
  6%|▌ | 267/4660 [01:08<20:13, 3.62it/s]
268
  6%|▌ | 268/4660 [01:09<18:47, 3.90it/s]
269
  6%|▌ | 269/4660 [01:09<17:36, 4.15it/s]
270
  6%|▌ | 270/4660 [01:09<17:29, 4.18it/s]
271
  6%|▌ | 271/4660 [01:09<17:57, 4.07it/s]
272
  6%|▌ | 272/4660 [01:10<17:37, 4.15it/s]
273
  6%|▌ | 273/4660 [01:10<17:53, 4.09it/s]
274
  6%|▌ | 274/4660 [01:10<17:00, 4.30it/s]
275
  6%|▌ | 275/4660 [01:10<16:35, 4.40it/s]
276
  6%|▌ | 276/4660 [01:10<16:42, 4.37it/s]
277
  6%|▌ | 277/4660 [01:11<18:03, 4.05it/s]
278
  6%|▌ | 278/4660 [01:11<19:03, 3.83it/s]
279
  6%|▌ | 279/4660 [01:11<17:11, 4.25it/s]
280
  6%|▌ | 280/4660 [01:11<17:08, 4.26it/s]
281
  6%|▌ | 281/4660 [01:12<17:17, 4.22it/s]
282
  6%|▌ | 282/4660 [01:12<18:01, 4.05it/s]
283
  6%|▌ | 283/4660 [01:13<33:01, 2.21it/s]
284
  6%|▌ | 284/4660 [01:13<28:47, 2.53it/s]
285
  6%|▌ | 285/4660 [01:13<27:31, 2.65it/s]
286
  6%|▌ | 286/4660 [01:14<23:58, 3.04it/s]
287
  6%|▌ | 287/4660 [01:14<21:26, 3.40it/s]
288
  6%|▌ | 288/4660 [01:14<19:32, 3.73it/s]
289
  6%|▌ | 289/4660 [01:14<18:26, 3.95it/s]
290
  6%|▌ | 290/4660 [01:15<18:12, 4.00it/s]
291
  6%|▌ | 291/4660 [01:15<18:36, 3.91it/s]
292
  6%|▋ | 292/4660 [01:15<18:20, 3.97it/s]
293
  6%|▋ | 293/4660 [01:15<16:32, 4.40it/s]
294
  6%|▋ | 294/4660 [01:15<17:01, 4.28it/s]
295
  6%|▋ | 295/4660 [01:16<16:54, 4.30it/s]
296
  6%|▋ | 296/4660 [01:16<19:33, 3.72it/s]
297
  6%|▋ | 297/4660 [01:16<18:00, 4.04it/s]
298
  6%|▋ | 298/4660 [01:16<16:52, 4.31it/s]
299
  6%|▋ | 299/4660 [01:17<18:22, 3.95it/s]
300
  6%|▋ | 300/4660 [01:17<19:28, 3.73it/s]
301
  6%|▋ | 301/4660 [01:17<18:59, 3.82it/s]
302
  6%|▋ | 302/4660 [01:18<18:53, 3.84it/s]
303
  7%|▋ | 303/4660 [01:18<17:42, 4.10it/s]
304
  7%|▋ | 304/4660 [01:18<17:11, 4.22it/s]
305
  7%|▋ | 305/4660 [01:18<18:49, 3.86it/s]
306
  7%|▋ | 306/4660 [01:18<16:58, 4.27it/s]
307
  7%|▋ | 307/4660 [01:19<17:22, 4.17it/s]
308
  7%|▋ | 308/4660 [01:19<18:16, 3.97it/s]
309
  7%|▋ | 309/4660 [01:19<18:57, 3.83it/s]
310
  7%|▋ | 310/4660 [01:20<17:44, 4.09it/s]
311
  7%|▋ | 311/4660 [01:20<18:09, 3.99it/s]
312
  7%|▋ | 312/4660 [01:20<17:54, 4.05it/s]
313
  7%|▋ | 313/4660 [01:20<17:42, 4.09it/s]
314
  7%|▋ | 314/4660 [01:20<17:19, 4.18it/s]
315
  7%|▋ | 315/4660 [01:21<18:42, 3.87it/s]
316
  7%|▋ | 316/4660 [01:21<17:06, 4.23it/s]
317
  7%|▋ | 317/4660 [01:21<15:49, 4.58it/s]
318
  7%|▋ | 318/4660 [01:21<15:00, 4.82it/s]
319
  7%|▋ | 319/4660 [01:22<15:03, 4.80it/s]
320
  7%|▋ | 320/4660 [01:22<14:26, 5.01it/s]
321
  7%|▋ | 321/4660 [01:22<17:21, 4.17it/s]
322
  7%|▋ | 322/4660 [01:22<16:51, 4.29it/s]
323
  7%|▋ | 323/4660 [01:23<18:51, 3.83it/s]
324
  7%|▋ | 324/4660 [01:23<21:04, 3.43it/s]
325
  7%|▋ | 325/4660 [01:23<21:24, 3.37it/s]
326
  7%|▋ | 326/4660 [01:24<20:49, 3.47it/s]
327
  7%|▋ | 327/4660 [01:24<19:49, 3.64it/s]
328
  7%|▋ | 328/4660 [01:24<21:37, 3.34it/s]
329
  7%|▋ | 329/4660 [01:24<22:11, 3.25it/s]
330
  7%|▋ | 330/4660 [01:25<20:35, 3.51it/s]
331
  7%|▋ | 331/4660 [01:25<19:01, 3.79it/s]
332
  7%|▋ | 332/4660 [01:25<18:31, 3.90it/s]
333
  7%|▋ | 333/4660 [01:25<17:06, 4.22it/s]
334
  7%|▋ | 334/4660 [01:26<15:52, 4.54it/s]
335
  7%|▋ | 335/4660 [01:26<15:30, 4.65it/s]
336
  7%|▋ | 336/4660 [01:26<19:12, 3.75it/s]
337
  7%|▋ | 337/4660 [01:26<20:20, 3.54it/s]
338
  7%|▋ | 338/4660 [01:27<18:33, 3.88it/s]
339
  7%|▋ | 339/4660 [01:27<19:07, 3.77it/s]
340
  7%|▋ | 340/4660 [01:27<19:09, 3.76it/s]
341
  7%|▋ | 341/4660 [01:27<19:37, 3.67it/s]
342
  7%|▋ | 342/4660 [01:28<19:34, 3.68it/s]
343
  7%|▋ | 343/4660 [01:28<20:32, 3.50it/s]
344
  7%|▋ | 344/4660 [01:28<19:12, 3.74it/s]
345
  7%|▋ | 345/4660 [01:29<18:17, 3.93it/s]
346
  7%|▋ | 346/4660 [01:29<17:31, 4.10it/s]
347
  7%|▋ | 347/4660 [01:29<16:39, 4.32it/s]
348
  7%|▋ | 348/4660 [01:29<16:56, 4.24it/s]
349
  7%|▋ | 349/4660 [01:29<16:01, 4.48it/s]
350
  8%|▊ | 350/4660 [01:30<15:54, 4.52it/s]
351
  8%|▊ | 351/4660 [01:30<16:11, 4.44it/s]
352
  8%|▊ | 352/4660 [01:30<16:38, 4.31it/s]
353
  8%|▊ | 353/4660 [01:30<15:39, 4.58it/s]
354
  8%|▊ | 354/4660 [01:30<15:43, 4.56it/s]
355
  8%|▊ | 355/4660 [01:31<16:23, 4.38it/s]
356
  8%|▊ | 356/4660 [01:31<16:50, 4.26it/s]
357
  8%|▊ | 357/4660 [01:31<17:43, 4.05it/s]
358
  8%|▊ | 358/4660 [01:32<19:18, 3.71it/s]
359
  8%|▊ | 359/4660 [01:32<17:18, 4.14it/s]
360
  8%|▊ | 360/4660 [01:32<19:29, 3.68it/s]
361
  8%|▊ | 361/4660 [01:32<19:41, 3.64it/s]
362
  8%|▊ | 362/4660 [01:33<18:05, 3.96it/s]
363
  8%|▊ | 363/4660 [01:33<18:02, 3.97it/s]
364
  8%|▊ | 364/4660 [01:33<19:01, 3.76it/s]
365
  8%|▊ | 365/4660 [01:33<18:20, 3.90it/s]
366
  8%|▊ | 366/4660 [01:34<17:07, 4.18it/s]
367
  8%|▊ | 367/4660 [01:34<16:10, 4.42it/s]
368
  8%|▊ | 368/4660 [01:34<17:07, 4.18it/s]
369
  8%|▊ | 369/4660 [01:34<16:08, 4.43it/s]
370
  8%|▊ | 370/4660 [01:34<15:32, 4.60it/s]
371
  8%|▊ | 371/4660 [01:35<17:52, 4.00it/s]
372
  8%|▊ | 372/4660 [01:35<16:37, 4.30it/s]
373
  8%|▊ | 373/4660 [01:35<18:36, 3.84it/s]
374
  8%|▊ | 374/4660 [01:35<17:34, 4.06it/s]
375
  8%|▊ | 375/4660 [01:36<16:32, 4.32it/s]
376
  8%|▊ | 376/4660 [01:36<16:06, 4.43it/s]
377
  8%|▊ | 377/4660 [01:36<16:35, 4.30it/s]
378
  8%|▊ | 378/4660 [01:36<17:19, 4.12it/s]
379
  8%|▊ | 379/4660 [01:37<18:22, 3.88it/s]
380
  8%|▊ | 380/4660 [01:37<17:23, 4.10it/s]
381
  8%|▊ | 381/4660 [01:37<16:29, 4.32it/s]
382
  8%|▊ | 382/4660 [01:37<18:57, 3.76it/s]
383
  8%|▊ | 383/4660 [01:38<17:17, 4.12it/s]
384
  8%|▊ | 384/4660 [01:38<17:11, 4.15it/s]
385
  8%|▊ | 385/4660 [01:38<15:58, 4.46it/s]
386
  8%|▊ | 386/4660 [01:38<16:50, 4.23it/s]
387
  8%|▊ | 387/4660 [01:39<19:30, 3.65it/s]
388
  8%|▊ | 388/4660 [01:39<19:00, 3.74it/s]
389
  8%|▊ | 389/4660 [01:39<22:05, 3.22it/s]
390
  8%|▊ | 390/4660 [01:40<20:15, 3.51it/s]
391
  8%|▊ | 391/4660 [01:40<18:00, 3.95it/s]
392
  8%|▊ | 392/4660 [01:40<17:34, 4.05it/s]
393
  8%|▊ | 393/4660 [01:40<16:33, 4.29it/s]
394
  8%|▊ | 394/4660 [01:40<15:36, 4.56it/s]
395
  8%|▊ | 395/4660 [01:41<16:03, 4.43it/s]
396
  8%|▊ | 396/4660 [01:41<18:03, 3.94it/s]
397
  9%|▊ | 397/4660 [01:41<17:34, 4.04it/s]
398
  9%|▊ | 398/4660 [01:41<16:19, 4.35it/s]
399
  9%|▊ | 399/4660 [01:42<15:56, 4.46it/s]
400
  9%|▊ | 400/4660 [01:42<15:27, 4.59it/s]
401
  9%|▊ | 401/4660 [01:42<15:22, 4.62it/s]
402
  9%|▊ | 402/4660 [01:42<15:11, 4.67it/s]
403
  9%|▊ | 403/4660 [01:42<14:31, 4.88it/s]
404
  9%|▊ | 404/4660 [01:43<13:49, 5.13it/s]
405
  9%|▊ | 405/4660 [01:43<13:42, 5.18it/s]
406
  9%|▊ | 406/4660 [01:43<13:53, 5.11it/s]
407
  9%|▊ | 407/4660 [01:43<14:43, 4.82it/s]
408
  9%|▉ | 408/4660 [01:44<18:10, 3.90it/s]
409
  9%|▉ | 409/4660 [01:44<18:19, 3.87it/s]
410
  9%|▉ | 410/4660 [01:44<16:55, 4.19it/s]
411
  9%|▉ | 411/4660 [01:44<16:34, 4.27it/s]
412
  9%|▉ | 412/4660 [01:44<15:43, 4.50it/s]
413
  9%|▉ | 413/4660 [01:45<16:21, 4.33it/s]
414
  9%|▉ | 414/4660 [01:45<17:06, 4.13it/s]
415
  9%|▉ | 415/4660 [01:45<18:21, 3.85it/s]
416
  9%|▉ | 416/4660 [01:46<18:37, 3.80it/s]
417
  9%|▉ | 417/4660 [01:46<20:12, 3.50it/s]
418
  9%|▉ | 418/4660 [01:46<19:52, 3.56it/s]
419
  9%|▉ | 419/4660 [01:46<18:10, 3.89it/s]
420
  9%|▉ | 420/4660 [01:47<17:26, 4.05it/s]
421
  9%|▉ | 421/4660 [01:47<18:46, 3.76it/s]
422
  9%|▉ | 422/4660 [01:47<17:24, 4.06it/s]
423
  9%|▉ | 423/4660 [01:47<18:08, 3.89it/s]
424
  9%|▉ | 424/4660 [01:48<17:24, 4.06it/s]
425
  9%|▉ | 425/4660 [01:48<16:35, 4.26it/s]
426
  9%|▉ | 426/4660 [01:48<16:44, 4.21it/s]
427
  9%|▉ | 427/4660 [01:48<16:32, 4.26it/s]
428
  9%|▉ | 428/4660 [01:48<15:43, 4.49it/s]
429
  9%|▉ | 429/4660 [01:49<15:12, 4.64it/s]
430
  9%|▉ | 430/4660 [01:49<14:26, 4.88it/s]
431
  9%|▉ | 431/4660 [01:49<17:06, 4.12it/s]
432
  9%|▉ | 432/4660 [01:49<17:05, 4.12it/s]
433
  9%|▉ | 433/4660 [01:50<17:57, 3.92it/s]
434
  9%|▉ | 434/4660 [01:50<17:38, 3.99it/s]
435
  9%|▉ | 435/4660 [01:50<16:49, 4.19it/s]
436
  9%|▉ | 436/4660 [01:50<16:16, 4.33it/s]
437
  9%|▉ | 437/4660 [01:51<15:52, 4.43it/s]
438
  9%|▉ | 438/4660 [01:51<15:30, 4.54it/s]
439
  9%|▉ | 439/4660 [01:51<16:01, 4.39it/s]
440
  9%|▉ | 440/4660 [01:51<16:31, 4.26it/s]
441
  9%|▉ | 441/4660 [01:51<15:35, 4.51it/s]
442
  9%|▉ | 442/4660 [01:52<22:06, 3.18it/s]
443
  10%|▉ | 443/4660 [01:52<19:45, 3.56it/s]
444
  10%|▉ | 444/4660 [01:52<19:25, 3.62it/s]
445
  10%|▉ | 445/4660 [01:53<19:08, 3.67it/s]
446
  10%|▉ | 446/4660 [01:53<17:40, 3.97it/s]
447
  10%|▉ | 447/4660 [01:53<19:30, 3.60it/s]
448
  10%|▉ | 448/4660 [01:54<20:24, 3.44it/s]
449
  10%|▉ | 449/4660 [01:54<18:35, 3.78it/s]
450
  10%|▉ | 450/4660 [01:54<21:35, 3.25it/s]
451
  10%|▉ | 451/4660 [01:54<20:15, 3.46it/s]
452
  10%|▉ | 452/4660 [01:55<19:27, 3.60it/s]
453
  10%|▉ | 453/4660 [01:55<20:21, 3.44it/s]
454
  10%|▉ | 454/4660 [01:55<18:20, 3.82it/s]
455
  10%|▉ | 455/4660 [01:55<17:41, 3.96it/s]
456
  10%|▉ | 456/4660 [01:56<17:16, 4.06it/s]
457
  10%|▉ | 457/4660 [01:56<17:12, 4.07it/s]
458
  10%|▉ | 458/4660 [01:56<16:36, 4.22it/s]
459
  10%|▉ | 459/4660 [01:57<25:20, 2.76it/s]
460
  10%|▉ | 460/4660 [01:57<22:38, 3.09it/s]
461
  10%|▉ | 461/4660 [01:57<23:28, 2.98it/s]
462
  10%|▉ | 462/4660 [01:58<20:07, 3.48it/s]
463
  10%|▉ | 463/4660 [01:58<18:55, 3.69it/s]
464
  10%|▉ | 464/4660 [01:58<18:08, 3.85it/s]
465
  10%|▉ | 465/4660 [01:58<17:20, 4.03it/s]
466
  10%|█ | 466/4660 [01:58<16:28, 4.24it/s][INFO|trainer.py:811] 2024-09-05 23:13:48,410 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
467
  0%| | 0/852 [00:00<?, ?it/s]
 
468
  1%| | 9/852 [00:00<00:09, 87.04it/s]
 
469
  2%|▏ | 18/852 [00:00<00:10, 78.62it/s]
 
470
  3%|▎ | 27/852 [00:00<00:10, 79.58it/s]
 
471
  4%|▍ | 35/852 [00:00<00:10, 78.85it/s]
 
472
  5%|▌ | 44/852 [00:00<00:10, 80.12it/s]
 
473
  6%|▌ | 53/852 [00:00<00:09, 81.95it/s]
 
474
  7%|▋ | 62/852 [00:00<00:09, 82.52it/s]
 
475
  8%|▊ | 71/852 [00:00<00:09, 78.94it/s]
 
476
  9%|▉ | 80/852 [00:01<00:09, 78.84it/s]
 
477
  10%|█ | 89/852 [00:01<00:09, 79.94it/s]
 
478
  12%|█▏ | 98/852 [00:01<00:09, 80.24it/s]
 
479
  13%|█▎ | 107/852 [00:01<00:09, 79.96it/s]
 
480
  14%|█▎ | 116/852 [00:01<00:09, 80.61it/s]
 
481
  15%|█▍ | 125/852 [00:01<00:08, 82.16it/s]
 
482
  16%|█▌ | 134/852 [00:01<00:09, 77.87it/s]
 
483
  17%|█▋ | 142/852 [00:01<00:09, 78.16it/s]
 
484
  18%|█▊ | 150/852 [00:01<00:09, 77.25it/s]
 
485
  19%|█▊ | 159/852 [00:01<00:08, 79.08it/s]
 
486
  20%|█▉ | 168/852 [00:02<00:08, 80.30it/s]
 
487
  21%|██ | 177/852 [00:02<00:08, 80.70it/s]
 
488
  22%|██▏ | 186/852 [00:02<00:08, 81.77it/s]
 
489
  23%|██▎ | 195/852 [00:02<00:08, 80.23it/s]
 
490
  24%|██▍ | 204/852 [00:02<00:07, 81.02it/s]
 
491
  25%|██▌ | 213/852 [00:02<00:07, 80.19it/s]
 
492
  26%|██▌ | 222/852 [00:02<00:07, 80.29it/s]
 
493
  27%|██▋ | 231/852 [00:02<00:07, 81.65it/s]
 
494
  28%|██▊ | 240/852 [00:02<00:07, 80.86it/s]
 
495
  29%|██▉ | 249/852 [00:03<00:07, 79.93it/s]
 
496
  30%|███ | 258/852 [00:03<00:07, 81.98it/s]
 
497
  31%|███▏ | 267/852 [00:03<00:07, 81.16it/s]
 
498
  32%|███▏ | 276/852 [00:03<00:07, 81.53it/s]
 
499
  33%|███▎ | 285/852 [00:03<00:06, 82.14it/s]
 
500
  35%|███▍ | 294/852 [00:03<00:06, 81.42it/s]
 
501
  36%|███▌ | 303/852 [00:03<00:06, 82.36it/s]
 
502
  37%|███▋ | 312/852 [00:03<00:06, 80.14it/s]
 
503
  38%|███▊ | 321/852 [00:03<00:06, 81.45it/s]
 
504
  39%|███▊ | 330/852 [00:04<00:06, 80.34it/s]
 
505
  40%|███▉ | 339/852 [00:04<00:06, 80.51it/s]
 
506
  41%|████ | 348/852 [00:04<00:06, 81.62it/s]
 
507
  42%|████▏ | 357/852 [00:04<00:06, 79.87it/s]
 
508
  43%|████▎ | 366/852 [00:04<00:05, 81.03it/s]
 
509
  44%|████▍ | 375/852 [00:04<00:05, 81.89it/s]
 
510
  45%|████▌ | 384/852 [00:04<00:05, 81.28it/s]
 
511
  46%|████▌ | 393/852 [00:04<00:05, 82.86it/s]
 
512
  47%|████▋ | 402/852 [00:04<00:05, 82.37it/s]
 
513
  48%|████▊ | 411/852 [00:05<00:05, 80.21it/s]
 
514
  49%|████▉ | 420/852 [00:05<00:05, 81.32it/s]
 
515
  50%|█████ | 429/852 [00:05<00:05, 80.36it/s]
 
516
  51%|█████▏ | 438/852 [00:05<00:05, 81.67it/s]
 
517
  52%|█████▏ | 447/852 [00:05<00:04, 81.84it/s]
 
518
  54%|█████▎ | 456/852 [00:05<00:04, 82.77it/s]
 
519
  55%|█████▍ | 465/852 [00:05<00:04, 81.67it/s]
 
520
  56%|█████▌ | 474/852 [00:05<00:04, 76.72it/s]
 
521
  57%|█████▋ | 483/852 [00:06<00:04, 77.86it/s]
 
522
  58%|█████▊ | 492/852 [00:06<00:04, 78.76it/s]
 
523
  59%|█████▉ | 501/852 [00:06<00:04, 80.94it/s]
 
524
  60%|█████▉ | 510/852 [00:06<00:04, 80.66it/s]
 
525
  61%|██████ | 519/852 [00:06<00:04, 81.83it/s]
 
526
  62%|██████▏ | 528/852 [00:06<00:04, 79.71it/s]
 
527
  63%|██████▎ | 537/852 [00:06<00:03, 81.93it/s]
 
528
  64%|██████▍ | 546/852 [00:06<00:03, 82.54it/s]
 
529
  65%|██████▌ | 555/852 [00:06<00:03, 79.93it/s]
 
530
  66%|██████▌ | 564/852 [00:06<00:03, 80.45it/s]
 
531
  67%|██████▋ | 573/852 [00:07<00:03, 81.11it/s]
 
532
  68%|██████▊ | 582/852 [00:07<00:03, 81.14it/s]
 
533
  69%|██████▉ | 591/852 [00:07<00:03, 80.29it/s]
 
534
  70%|███████ | 600/852 [00:07<00:03, 80.37it/s]
 
535
  71%|███████▏ | 609/852 [00:07<00:03, 80.96it/s]
 
536
  73%|███████▎ | 618/852 [00:07<00:02, 79.39it/s]
 
537
  73%|███████▎ | 626/852 [00:07<00:02, 79.48it/s]
 
538
  74%|███████▍ | 634/852 [00:07<00:02, 79.56it/s]
 
539
  75%|███████▌ | 642/852 [00:07<00:02, 76.70it/s]
 
540
  76%|███████▋ | 651/852 [00:08<00:02, 78.86it/s]
 
541
  77%|███████▋ | 660/852 [00:08<00:02, 80.53it/s]
 
542
  79%|███████▊ | 669/852 [00:08<00:02, 80.93it/s]
 
543
  80%|███████▉ | 678/852 [00:08<00:02, 81.23it/s]
 
544
  81%|████████ | 687/852 [00:08<00:02, 81.90it/s]
 
545
  82%|████████▏ | 696/852 [00:08<00:01, 82.92it/s]
 
546
  83%|████████▎ | 705/852 [00:08<00:01, 84.10it/s]
 
547
  84%|████████▍ | 714/852 [00:08<00:01, 84.78it/s]
 
548
  85%|████████▍ | 723/852 [00:08<00:01, 83.35it/s]
 
549
  86%|████████▌ | 732/852 [00:09<00:01, 84.47it/s]
 
550
  87%|████████▋ | 741/852 [00:09<00:01, 84.18it/s]
 
551
  88%|████████▊ | 750/852 [00:09<00:01, 84.46it/s]
 
552
  89%|████████▉ | 759/852 [00:09<00:01, 85.22it/s]
 
553
  90%|█████████ | 768/852 [00:09<00:01, 83.60it/s]
 
554
  91%|█████████ | 777/852 [00:09<00:00, 84.05it/s]
 
555
  92%|█████████▏| 786/852 [00:09<00:00, 82.48it/s]
 
556
  93%|█████████▎| 795/852 [00:09<00:00, 83.63it/s]
 
557
  94%|█████████▍| 804/852 [00:09<00:00, 84.80it/s]
 
558
  95%|█████████▌| 813/852 [00:10<00:00, 83.62it/s]
 
559
  96%|█████████▋| 822/852 [00:10<00:00, 83.96it/s]
 
560
  98%|█████████▊| 831/852 [00:10<00:00, 84.33it/s]
 
561
  99%|█████████▊| 840/852 [00:10<00:00, 82.98it/s]
 
562
 
 
563
 
564
  10%|█ | 466/4660 [02:12<16:28, 4.24it/s]
 
 
565
  [INFO|trainer.py:3503] 2024-09-05 23:14:02,411 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-466
 
 
 
 
 
 
 
566
  10%|█ | 467/4660 [02:20<7:35:00, 6.51s/it]
567
  10%|█ | 468/4660 [02:20<5:22:02, 4.61s/it]
568
  10%|█ | 469/4660 [02:20<3:50:09, 3.29s/it]
569
  10%|█ | 470/4660 [02:20<2:45:14, 2.37s/it]
570
  10%|█ | 471/4660 [02:20<2:01:55, 1.75s/it]
571
  10%|█ | 472/4660 [02:21<1:30:03, 1.29s/it]
572
  10%|█ | 473/4660 [02:21<1:07:44, 1.03it/s]
573
  10%|█ | 474/4660 [02:21<52:40, 1.32it/s]
574
  10%|█ | 475/4660 [02:21<41:07, 1.70it/s]
575
  10%|█ | 476/4660 [02:22<33:13, 2.10it/s]
576
  10%|█ | 477/4660 [02:22<27:46, 2.51it/s]
577
  10%|█ | 478/4660 [02:22<23:22, 2.98it/s]
578
  10%|█ | 479/4660 [02:22<22:05, 3.15it/s]
579
  10%|█ | 480/4660 [02:23<20:19, 3.43it/s]
580
  10%|█ | 481/4660 [02:23<22:03, 3.16it/s]
581
  10%|█ | 482/4660 [02:23<19:59, 3.48it/s]
582
  10%|█ | 483/4660 [02:23<19:06, 3.64it/s]
583
  10%|█ | 484/4660 [02:24<17:17, 4.02it/s]
584
  10%|█ | 485/4660 [02:24<16:54, 4.11it/s]
585
  10%|█ | 486/4660 [02:24<16:30, 4.21it/s]
586
  10%|█ | 487/4660 [02:24<15:46, 4.41it/s]
587
  10%|█ | 488/4660 [02:25<18:07, 3.84it/s]
588
  10%|█ | 489/4660 [02:25<18:19, 3.79it/s]
589
  11%|█ | 490/4660 [02:25<18:28, 3.76it/s]
590
  11%|█ | 491/4660 [02:25<16:46, 4.14it/s]
591
  11%|█ | 492/4660 [02:25<16:33, 4.19it/s]
592
  11%|█ | 493/4660 [02:26<18:09, 3.82it/s]
593
  11%|█ | 494/4660 [02:26<17:24, 3.99it/s]
594
  11%|█ | 495/4660 [02:26<18:01, 3.85it/s]
595
  11%|█ | 496/4660 [02:27<16:58, 4.09it/s]
596
  11%|█ | 497/4660 [02:27<21:16, 3.26it/s]
597
  11%|█ | 498/4660 [02:27<19:03, 3.64it/s]
598
  11%|█ | 499/4660 [02:27<17:54, 3.87it/s]
599
  11%|█ | 500/4660 [02:28<17:15, 4.02it/s]
600
 
601
  11%|█ | 500/4660 [02:28<17:15, 4.02it/s]
602
  11%|█ | 501/4660 [02:28<17:01, 4.07it/s]
603
  11%|█ | 502/4660 [02:28<17:04, 4.06it/s]
604
  11%|█ | 503/4660 [02:28<16:51, 4.11it/s]
605
  11%|█ | 504/4660 [02:29<17:04, 4.06it/s]
606
  11%|█ | 505/4660 [02:29<15:47, 4.39it/s]
607
  11%|█ | 506/4660 [02:29<16:57, 4.08it/s]
608
  11%|█ | 507/4660 [02:29<18:23, 3.76it/s]
609
  11%|█ | 508/4660 [02:30<17:09, 4.03it/s]
610
  11%|█ | 509/4660 [02:30<16:14, 4.26it/s]
611
  11%|█ | 510/4660 [02:30<21:31, 3.21it/s]
612
  11%|█ | 511/4660 [02:31<20:43, 3.34it/s]
613
  11%|█ | 512/4660 [02:31<19:25, 3.56it/s]
614
  11%|█ | 513/4660 [02:31<27:43, 2.49it/s]
615
  11%|█ | 514/4660 [02:32<23:53, 2.89it/s]
616
  11%|█ | 515/4660 [02:32<22:02, 3.13it/s]
617
  11%|█ | 516/4660 [02:32<19:16, 3.58it/s]
618
  11%|█ | 517/4660 [02:32<18:29, 3.73it/s]
619
  11%|█ | 518/4660 [02:33<18:28, 3.74it/s]
620
  11%|█ | 519/4660 [02:33<18:21, 3.76it/s]
621
  11%|█ | 520/4660 [02:33<18:38, 3.70it/s]
622
  11%|█ | 521/4660 [02:33<18:50, 3.66it/s]
623
  11%|█ | 522/4660 [02:34<16:46, 4.11it/s]
624
  11%|█ | 523/4660 [02:34<15:35, 4.42it/s]
625
  11%|█ | 524/4660 [02:34<16:18, 4.23it/s]
626
  11%|█▏ | 525/4660 [02:34<16:04, 4.29it/s]
627
  11%|█▏ | 526/4660 [02:35<15:49, 4.35it/s]
628
  11%|█▏ | 527/4660 [02:35<15:02, 4.58it/s]
629
  11%|█▏ | 528/4660 [02:35<14:13, 4.84it/s]
630
  11%|█▏ | 529/4660 [02:35<14:02, 4.90it/s]
631
  11%|█▏ | 530/4660 [02:35<14:10, 4.86it/s]
632
  11%|█▏ | 531/4660 [02:35<13:20, 5.16it/s]
633
  11%|█▏ | 532/4660 [02:36<13:18, 5.17it/s]
634
  11%|█▏ | 533/4660 [02:36<16:04, 4.28it/s]
635
  11%|█▏ | 534/4660 [02:36<17:23, 3.95it/s]
636
  11%|█▏ | 535/4660 [02:36<15:38, 4.40it/s]
637
  12%|█▏ | 536/4660 [02:37<15:29, 4.44it/s]
638
  12%|█▏ | 537/4660 [02:37<15:20, 4.48it/s]
639
  12%|█▏ | 538/4660 [02:37<18:06, 3.79it/s]
640
  12%|█▏ | 539/4660 [02:37<16:42, 4.11it/s]
641
  12%|█▏ | 540/4660 [02:38<17:15, 3.98it/s]
642
  12%|█▏ | 541/4660 [02:38<17:02, 4.03it/s]
643
  12%|█▏ | 542/4660 [02:38<15:54, 4.32it/s]
644
  12%|█▏ | 543/4660 [02:38<15:38, 4.39it/s]
645
  12%|█▏ | 544/4660 [02:39<15:53, 4.32it/s]
646
  12%|█▏ | 545/4660 [02:39<18:07, 3.78it/s]
647
  12%|█▏ | 546/4660 [02:39<17:14, 3.98it/s]
648
  12%|█▏ | 547/4660 [02:39<17:26, 3.93it/s]
649
  12%|█▏ | 548/4660 [02:40<17:39, 3.88it/s]
650
  12%|█▏ | 549/4660 [02:40<18:09, 3.77it/s]
651
  12%|█▏ | 550/4660 [02:40<17:44, 3.86it/s]
652
  12%|█▏ | 551/4660 [02:40<17:14, 3.97it/s]
653
  12%|█▏ | 552/4660 [02:41<16:05, 4.25it/s]
654
  12%|█▏ | 553/4660 [02:41<15:26, 4.43it/s]
655
  12%|█▏ | 554/4660 [02:41<17:23, 3.94it/s]
656
  12%|█▏ | 555/4660 [02:41<17:56, 3.81it/s]
657
  12%|█▏ | 556/4660 [02:42<17:54, 3.82it/s]
658
  12%|█▏ | 557/4660 [02:42<17:55, 3.81it/s]
659
  12%|█▏ | 558/4660 [02:42<18:21, 3.72it/s]
660
  12%|█▏ | 559/4660 [02:43<19:13, 3.55it/s]
661
  12%|█▏ | 560/4660 [02:43<18:18, 3.73it/s]
662
  12%|█▏ | 561/4660 [02:43<17:27, 3.91it/s]
663
  12%|█▏ | 562/4660 [02:43<16:04, 4.25it/s]
664
  12%|█▏ | 563/4660 [02:43<15:34, 4.38it/s]
665
  12%|█▏ | 564/4660 [02:44<16:03, 4.25it/s]
666
  12%|█▏ | 565/4660 [02:44<15:16, 4.47it/s]
667
  12%|█▏ | 566/4660 [02:44<15:56, 4.28it/s]
668
  12%|█▏ | 567/4660 [02:44<15:10, 4.50it/s]
669
  12%|█▏ | 568/4660 [02:45<13:54, 4.90it/s]
670
  12%|█▏ | 569/4660 [02:45<13:41, 4.98it/s]
671
  12%|█▏ | 570/4660 [02:45<14:06, 4.83it/s]
672
  12%|█▏ | 571/4660 [02:45<15:39, 4.35it/s]
673
  12%|█▏ | 572/4660 [02:46<18:05, 3.77it/s]
674
  12%|█▏ | 573/4660 [02:46<16:00, 4.25it/s]
675
  12%|█▏ | 574/4660 [02:46<17:30, 3.89it/s]
676
  12%|█▏ | 575/4660 [02:46<17:53, 3.80it/s]
677
  12%|█▏ | 576/4660 [02:47<17:00, 4.00it/s]
678
  12%|█▏ | 577/4660 [02:47<16:54, 4.03it/s]
679
  12%|█▏ | 578/4660 [02:47<17:03, 3.99it/s]
680
  12%|█▏ | 579/4660 [02:47<17:35, 3.87it/s]
681
  12%|█▏ | 580/4660 [02:48<16:52, 4.03it/s]
682
  12%|█▏ | 581/4660 [02:48<16:57, 4.01it/s]
683
  12%|█▏ | 582/4660 [02:48<16:52, 4.03it/s]
684
  13%|█▎ | 583/4660 [02:48<18:54, 3.59it/s]
685
  13%|█▎ | 584/4660 [02:49<17:09, 3.96it/s]
686
  13%|█▎ | 585/4660 [02:49<15:29, 4.39it/s]
687
  13%|█▎ | 586/4660 [02:49<14:32, 4.67it/s]
688
  13%|█▎ | 587/4660 [02:49<14:10, 4.79it/s]
689
  13%|█▎ | 588/4660 [02:50<27:18, 2.48it/s]
690
  13%|█▎ | 589/4660 [02:50<22:41, 2.99it/s]
691
  13%|█▎ | 590/4660 [02:50<21:23, 3.17it/s]
692
  13%|█▎ | 591/4660 [02:51<19:02, 3.56it/s]
693
  13%|█▎ | 592/4660 [02:51<20:57, 3.23it/s]
694
  13%|█▎ | 593/4660 [02:51<19:04, 3.55it/s]
695
  13%|█▎ | 594/4660 [02:51<18:27, 3.67it/s]
696
  13%|█▎ | 595/4660 [02:52<17:21, 3.90it/s]
697
  13%|█▎ | 596/4660 [02:52<16:18, 4.16it/s]
698
  13%|█▎ | 597/4660 [02:52<15:16, 4.43it/s]
699
  13%|█▎ | 598/4660 [02:52<14:25, 4.70it/s]
700
  13%|█▎ | 599/4660 [02:52<13:52, 4.88it/s]
701
  13%|█▎ | 600/4660 [02:53<15:59, 4.23it/s]
702
  13%|█▎ | 601/4660 [02:53<16:01, 4.22it/s]
703
  13%|█▎ | 602/4660 [02:53<16:54, 4.00it/s]
704
  13%|█▎ | 603/4660 [02:54<17:32, 3.86it/s]
705
  13%|█▎ | 604/4660 [02:54<25:52, 2.61it/s]
706
  13%|█▎ | 605/4660 [02:54<22:11, 3.04it/s]
707
  13%|█▎ | 606/4660 [02:55<19:45, 3.42it/s]
708
  13%|█▎ | 607/4660 [02:55<18:59, 3.56it/s]
709
  13%|█▎ | 608/4660 [02:55<17:46, 3.80it/s]
710
  13%|█▎ | 609/4660 [02:55<17:16, 3.91it/s]
711
  13%|█▎ | 610/4660 [02:56<16:17, 4.15it/s]
712
  13%|█▎ | 611/4660 [02:56<17:15, 3.91it/s]
713
  13%|█▎ | 612/4660 [02:56<19:37, 3.44it/s]
714
  13%|█▎ | 613/4660 [02:56<17:59, 3.75it/s]
715
  13%|█▎ | 614/4660 [02:57<17:30, 3.85it/s]
716
  13%|█▎ | 615/4660 [02:57<15:27, 4.36it/s]
717
  13%|█▎ | 616/4660 [02:57<15:41, 4.29it/s]
718
  13%|█▎ | 617/4660 [02:57<17:25, 3.87it/s]
719
  13%|█▎ | 618/4660 [02:58<21:15, 3.17it/s]
720
  13%|█▎ | 619/4660 [02:58<19:34, 3.44it/s]
721
  13%|█▎ | 620/4660 [02:58<19:02, 3.54it/s]
722
  13%|█▎ | 621/4660 [02:59<17:31, 3.84it/s]
723
  13%|█▎ | 622/4660 [02:59<15:26, 4.36it/s]
724
  13%|█▎ | 623/4660 [02:59<14:15, 4.72it/s]
725
  13%|█▎ | 624/4660 [02:59<14:07, 4.76it/s]
726
  13%|█▎ | 625/4660 [02:59<13:17, 5.06it/s]
727
  13%|█▎ | 626/4660 [02:59<12:33, 5.35it/s]
728
  13%|█▎ | 627/4660 [03:00<12:50, 5.24it/s]
729
  13%|█▎ | 628/4660 [03:00<13:23, 5.02it/s]
730
  13%|█▎ | 629/4660 [03:00<13:58, 4.81it/s]
731
  14%|█▎ | 630/4660 [03:00<14:43, 4.56it/s]
732
  14%|█▎ | 631/4660 [03:00<14:00, 4.79it/s]
733
  14%|█▎ | 632/4660 [03:01<14:29, 4.63it/s]
734
  14%|█▎ | 633/4660 [03:01<14:52, 4.51it/s]
735
  14%|█▎ | 634/4660 [03:01<16:16, 4.12it/s]
736
  14%|█▎ | 635/4660 [03:01<16:17, 4.12it/s]
737
  14%|█▎ | 636/4660 [03:02<15:11, 4.42it/s]
738
  14%|█▎ | 637/4660 [03:02<14:09, 4.74it/s]
739
  14%|█▎ | 638/4660 [03:02<13:27, 4.98it/s]
740
  14%|█▎ | 639/4660 [03:02<13:57, 4.80it/s]
741
  14%|█▎ | 640/4660 [03:03<14:51, 4.51it/s]
742
  14%|█▍ | 641/4660 [03:03<14:14, 4.70it/s]
743
  14%|█▍ | 642/4660 [03:03<13:55, 4.81it/s]
744
  14%|█▍ | 643/4660 [03:03<15:11, 4.40it/s]
745
  14%|█▍ | 644/4660 [03:03<15:38, 4.28it/s]
746
  14%|█▍ | 645/4660 [03:04<18:12, 3.68it/s]
747
  14%|█▍ | 646/4660 [03:04<16:32, 4.04it/s]
748
  14%|█▍ | 647/4660 [03:04<16:08, 4.14it/s]
749
  14%|█▍ | 648/4660 [03:05<18:37, 3.59it/s]
750
  14%|█▍ | 649/4660 [03:05<16:54, 3.95it/s]
751
  14%|█▍ | 650/4660 [03:05<17:13, 3.88it/s]
752
  14%|█▍ | 651/4660 [03:05<17:43, 3.77it/s]
753
  14%|█▍ | 652/4660 [03:05<16:06, 4.15it/s]
754
  14%|█▍ | 653/4660 [03:06<15:29, 4.31it/s]
755
  14%|█▍ | 654/4660 [03:06<15:24, 4.33it/s]
756
  14%|█▍ | 655/4660 [03:06<16:11, 4.12it/s]
757
  14%|█▍ | 656/4660 [03:06<15:04, 4.43it/s]
758
  14%|█▍ | 657/4660 [03:07<14:10, 4.71it/s]
759
  14%|█▍ | 658/4660 [03:07<14:31, 4.59it/s]
760
  14%|█▍ | 659/4660 [03:07<14:03, 4.74it/s]
761
  14%|█▍ | 660/4660 [03:07<15:13, 4.38it/s]
762
  14%|█▍ | 661/4660 [03:07<15:25, 4.32it/s]
763
  14%|█▍ | 662/4660 [03:08<14:18, 4.66it/s]
764
  14%|█▍ | 663/4660 [03:08<14:18, 4.66it/s]
765
  14%|█▍ | 664/4660 [03:08<15:55, 4.18it/s]
766
  14%|█▍ | 665/4660 [03:08<15:01, 4.43it/s]
767
  14%|█▍ | 666/4660 [03:09<14:22, 4.63it/s]
768
  14%|█▍ | 667/4660 [03:09<14:20, 4.64it/s]
769
  14%|█▍ | 668/4660 [03:09<15:44, 4.22it/s]
770
  14%|█▍ | 669/4660 [03:09<14:41, 4.53it/s]
771
  14%|█▍ | 670/4660 [03:09<14:17, 4.65it/s]
772
  14%|█▍ | 671/4660 [03:10<20:51, 3.19it/s]
773
  14%|█▍ | 672/4660 [03:10<19:12, 3.46it/s]
774
  14%|█▍ | 673/4660 [03:10<18:07, 3.67it/s]
775
  14%|█▍ | 674/4660 [03:11<16:17, 4.08it/s]
776
  14%|█▍ | 675/4660 [03:11<15:16, 4.35it/s]
777
  15%|█▍ | 676/4660 [03:11<15:56, 4.17it/s]
778
  15%|█▍ | 677/4660 [03:11<15:43, 4.22it/s]
779
  15%|█▍ | 678/4660 [03:11<14:08, 4.69it/s]
780
  15%|█▍ | 679/4660 [03:12<13:59, 4.74it/s]
 
1
+ 2024-09-05 23:11:20.272577: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-09-05 23:11:20.290773: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-09-05 23:11:20.312338: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
4
+ 2024-09-05 23:11:20.318778: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-09-05 23:11:20.334427: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-09-05 23:11:21.616309: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
9
+ warnings.warn(
10
+ 09/05/2024 23:11:23 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 09/05/2024 23:11:23 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ batch_eval_metrics=False,
20
+ bf16=False,
21
+ bf16_full_eval=False,
22
+ data_seed=None,
23
+ dataloader_drop_last=False,
24
+ dataloader_num_workers=0,
25
+ dataloader_persistent_workers=False,
26
+ dataloader_pin_memory=True,
27
+ dataloader_prefetch_factor=None,
28
+ ddp_backend=None,
29
+ ddp_broadcast_buffers=None,
30
+ ddp_bucket_cap_mb=None,
31
+ ddp_find_unused_parameters=None,
32
+ ddp_timeout=1800,
33
+ debug=[],
34
+ deepspeed=None,
35
+ disable_tqdm=False,
36
+ dispatch_batches=None,
37
+ do_eval=True,
38
+ do_predict=True,
39
+ do_train=True,
40
+ eval_accumulation_steps=None,
41
+ eval_delay=0,
42
+ eval_do_concat_batches=True,
43
+ eval_on_start=False,
44
+ eval_steps=None,
45
+ eval_strategy=epoch,
46
+ eval_use_gather_object=False,
47
+ evaluation_strategy=epoch,
48
+ fp16=False,
49
+ fp16_backend=auto,
50
+ fp16_full_eval=False,
51
+ fp16_opt_level=O1,
52
+ fsdp=[],
53
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
54
+ fsdp_min_num_params=0,
55
+ fsdp_transformer_layer_cls_to_wrap=None,
56
+ full_determinism=False,
57
+ gradient_accumulation_steps=2,
58
+ gradient_checkpointing=False,
59
+ gradient_checkpointing_kwargs=None,
60
+ greater_is_better=True,
61
+ group_by_length=False,
62
+ half_precision_backend=auto,
63
+ hub_always_push=False,
64
+ hub_model_id=None,
65
+ hub_private_repo=False,
66
+ hub_strategy=every_save,
67
+ hub_token=<HUB_TOKEN>,
68
+ ignore_data_skip=False,
69
+ include_inputs_for_metrics=False,
70
+ include_num_input_tokens_seen=False,
71
+ include_tokens_per_second=False,
72
+ jit_mode_eval=False,
73
+ label_names=None,
74
+ label_smoothing_factor=0.0,
75
+ learning_rate=5e-05,
76
+ length_column_name=length,
77
+ load_best_model_at_end=True,
78
+ local_rank=0,
79
+ log_level=passive,
80
+ log_level_replica=warning,
81
+ log_on_each_node=True,
82
+ logging_dir=/content/dissertation/scripts/ner/output/tb,
83
+ logging_first_step=False,
84
+ logging_nan_inf_filter=True,
85
+ logging_steps=500,
86
+ logging_strategy=steps,
87
+ lr_scheduler_kwargs={},
88
+ lr_scheduler_type=linear,
89
+ max_grad_norm=1.0,
90
+ max_steps=-1,
91
+ metric_for_best_model=f1,
92
+ mp_parameters=,
93
+ neftune_noise_alpha=None,
94
+ no_cuda=False,
95
+ num_train_epochs=10.0,
96
+ optim=adamw_torch,
97
+ optim_args=None,
98
+ optim_target_modules=None,
99
+ output_dir=/content/dissertation/scripts/ner/output,
100
+ overwrite_output_dir=True,
101
+ past_index=-1,
102
+ per_device_eval_batch_size=8,
103
+ per_device_train_batch_size=32,
104
+ prediction_loss_only=False,
105
+ push_to_hub=True,
106
+ push_to_hub_model_id=None,
107
+ push_to_hub_organization=None,
108
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
109
+ ray_scope=last,
110
+ remove_unused_columns=True,
111
+ report_to=['tensorboard'],
112
+ restore_callback_states_from_checkpoint=False,
113
+ resume_from_checkpoint=None,
114
+ run_name=/content/dissertation/scripts/ner/output,
115
+ save_on_each_node=False,
116
+ save_only_model=False,
117
+ save_safetensors=True,
118
+ save_steps=500,
119
+ save_strategy=epoch,
120
+ save_total_limit=None,
121
+ seed=42,
122
+ skip_memory_metrics=True,
123
+ split_batches=None,
124
+ tf32=None,
125
+ torch_compile=False,
126
+ torch_compile_backend=None,
127
+ torch_compile_mode=None,
128
+ torch_empty_cache_steps=None,
129
+ torchdynamo=None,
130
+ tpu_metrics_debug=False,
131
+ tpu_num_cores=None,
132
+ use_cpu=False,
133
+ use_ipex=False,
134
+ use_legacy_prediction_loop=False,
135
+ use_mps_device=False,
136
+ warmup_ratio=0.0,
137
+ warmup_steps=0,
138
+ weight_decay=0.0,
139
+ )
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ [INFO|configuration_utils.py:733] 2024-09-05 23:11:41,247 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
148
+ [INFO|configuration_utils.py:800] 2024-09-05 23:11:41,251 >> Model config RobertaConfig {
149
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
150
+ "architectures": [
151
+ "RobertaForMaskedLM"
152
+ ],
153
+ "attention_probs_dropout_prob": 0.1,
154
+ "bos_token_id": 0,
155
+ "classifier_dropout": null,
156
+ "eos_token_id": 2,
157
+ "finetuning_task": "ner",
158
+ "gradient_checkpointing": false,
159
+ "hidden_act": "gelu",
160
+ "hidden_dropout_prob": 0.1,
161
+ "hidden_size": 768,
162
+ "id2label": {
163
+ "0": "O",
164
+ "1": "B-FARMACO",
165
+ "2": "I-FARMACO"
166
+ },
167
+ "initializer_range": 0.02,
168
+ "intermediate_size": 3072,
169
+ "label2id": {
170
+ "B-FARMACO": 1,
171
+ "I-FARMACO": 2,
172
+ "O": 0
173
+ },
174
+ "layer_norm_eps": 1e-05,
175
+ "max_position_embeddings": 514,
176
+ "model_type": "roberta",
177
+ "num_attention_heads": 12,
178
+ "num_hidden_layers": 12,
179
+ "pad_token_id": 1,
180
+ "position_embedding_type": "absolute",
181
+ "transformers_version": "4.44.2",
182
+ "type_vocab_size": 1,
183
+ "use_cache": true,
184
+ "vocab_size": 50262
185
+ }
186
+
187
+ [INFO|configuration_utils.py:733] 2024-09-05 23:11:41,488 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
188
+ [INFO|configuration_utils.py:800] 2024-09-05 23:11:41,489 >> Model config RobertaConfig {
189
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
190
+ "architectures": [
191
+ "RobertaForMaskedLM"
192
+ ],
193
+ "attention_probs_dropout_prob": 0.1,
194
+ "bos_token_id": 0,
195
+ "classifier_dropout": null,
196
+ "eos_token_id": 2,
197
+ "gradient_checkpointing": false,
198
+ "hidden_act": "gelu",
199
+ "hidden_dropout_prob": 0.1,
200
+ "hidden_size": 768,
201
+ "initializer_range": 0.02,
202
+ "intermediate_size": 3072,
203
+ "layer_norm_eps": 1e-05,
204
+ "max_position_embeddings": 514,
205
+ "model_type": "roberta",
206
+ "num_attention_heads": 12,
207
+ "num_hidden_layers": 12,
208
+ "pad_token_id": 1,
209
+ "position_embedding_type": "absolute",
210
+ "transformers_version": "4.44.2",
211
+ "type_vocab_size": 1,
212
+ "use_cache": true,
213
+ "vocab_size": 50262
214
+ }
215
+
216
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 23:11:41,500 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/vocab.json
217
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 23:11:41,500 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/merges.txt
218
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 23:11:41,500 >> loading file tokenizer.json from cache at None
219
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 23:11:41,500 >> loading file added_tokens.json from cache at None
220
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 23:11:41,500 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/special_tokens_map.json
221
+ [INFO|tokenization_utils_base.py:2269] 2024-09-05 23:11:41,500 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/tokenizer_config.json
222
+ [INFO|configuration_utils.py:733] 2024-09-05 23:11:41,501 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
223
+ [INFO|configuration_utils.py:800] 2024-09-05 23:11:41,501 >> Model config RobertaConfig {
224
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
225
+ "architectures": [
226
+ "RobertaForMaskedLM"
227
+ ],
228
+ "attention_probs_dropout_prob": 0.1,
229
+ "bos_token_id": 0,
230
+ "classifier_dropout": null,
231
+ "eos_token_id": 2,
232
+ "gradient_checkpointing": false,
233
+ "hidden_act": "gelu",
234
+ "hidden_dropout_prob": 0.1,
235
+ "hidden_size": 768,
236
+ "initializer_range": 0.02,
237
+ "intermediate_size": 3072,
238
+ "layer_norm_eps": 1e-05,
239
+ "max_position_embeddings": 514,
240
+ "model_type": "roberta",
241
+ "num_attention_heads": 12,
242
+ "num_hidden_layers": 12,
243
+ "pad_token_id": 1,
244
+ "position_embedding_type": "absolute",
245
+ "transformers_version": "4.44.2",
246
+ "type_vocab_size": 1,
247
+ "use_cache": true,
248
+ "vocab_size": 50262
249
+ }
250
+
251
+ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
252
+ warnings.warn(
253
+ [INFO|configuration_utils.py:733] 2024-09-05 23:11:41,588 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
254
+ [INFO|configuration_utils.py:800] 2024-09-05 23:11:41,590 >> Model config RobertaConfig {
255
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
256
+ "architectures": [
257
+ "RobertaForMaskedLM"
258
+ ],
259
+ "attention_probs_dropout_prob": 0.1,
260
+ "bos_token_id": 0,
261
+ "classifier_dropout": null,
262
+ "eos_token_id": 2,
263
+ "gradient_checkpointing": false,
264
+ "hidden_act": "gelu",
265
+ "hidden_dropout_prob": 0.1,
266
+ "hidden_size": 768,
267
+ "initializer_range": 0.02,
268
+ "intermediate_size": 3072,
269
+ "layer_norm_eps": 1e-05,
270
+ "max_position_embeddings": 514,
271
+ "model_type": "roberta",
272
+ "num_attention_heads": 12,
273
+ "num_hidden_layers": 12,
274
+ "pad_token_id": 1,
275
+ "position_embedding_type": "absolute",
276
+ "transformers_version": "4.44.2",
277
+ "type_vocab_size": 1,
278
+ "use_cache": true,
279
+ "vocab_size": 50262
280
+ }
281
+
282
+ [INFO|modeling_utils.py:3678] 2024-09-05 23:11:41,949 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/pytorch_model.bin
283
+ [INFO|modeling_utils.py:4497] 2024-09-05 23:11:42,028 >> Some weights of the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es were not used when initializing RobertaForTokenClassification: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.decoder.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']
284
+ - This IS expected if you are initializing RobertaForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
285
+ - This IS NOT expected if you are initializing RobertaForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
286
+ [WARNING|modeling_utils.py:4509] 2024-09-05 23:11:42,028 >> Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es and are newly initialized: ['classifier.bias', 'classifier.weight']
287
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
288
+
289
+
290
+
291
+ /content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
292
+ metric = load_metric("seqeval", trust_remote_code=True)
293
+ [INFO|trainer.py:811] 2024-09-05 23:11:48,913 >> The following columns in the training set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
294
+ [INFO|trainer.py:2134] 2024-09-05 23:11:49,475 >> ***** Running training *****
295
+ [INFO|trainer.py:2135] 2024-09-05 23:11:49,475 >> Num examples = 29,797
296
+ [INFO|trainer.py:2136] 2024-09-05 23:11:49,475 >> Num Epochs = 10
297
+ [INFO|trainer.py:2137] 2024-09-05 23:11:49,475 >> Instantaneous batch size per device = 32
298
+ [INFO|trainer.py:2140] 2024-09-05 23:11:49,475 >> Total train batch size (w. parallel, distributed & accumulation) = 64
299
+ [INFO|trainer.py:2141] 2024-09-05 23:11:49,475 >> Gradient Accumulation steps = 2
300
+ [INFO|trainer.py:2142] 2024-09-05 23:11:49,475 >> Total optimization steps = 4,660
301
+ [INFO|trainer.py:2143] 2024-09-05 23:11:49,476 >> Number of trainable parameters = 124,055,043
302
+
303
  0%| | 0/4660 [00:00<?, ?it/s]
304
  0%| | 1/4660 [00:01<1:34:24, 1.22s/it]
305
  0%| | 2/4660 [00:01<51:16, 1.51it/s]
306
  0%| | 3/4660 [00:01<34:20, 2.26it/s]
307
  0%| | 4/4660 [00:01<25:37, 3.03it/s]
308
  0%| | 5/4660 [00:02<21:49, 3.55it/s]
309
  0%| | 6/4660 [00:02<19:39, 3.94it/s]
310
  0%| | 7/4660 [00:02<20:00, 3.87it/s]
311
  0%| | 8/4660 [00:02<19:47, 3.92it/s]
312
  0%| | 9/4660 [00:02<19:43, 3.93it/s]
313
  0%| | 10/4660 [00:03<17:45, 4.36it/s]
314
  0%| | 11/4660 [00:03<17:00, 4.55it/s]
315
  0%| | 12/4660 [00:03<17:36, 4.40it/s]
316
  0%| | 13/4660 [00:03<17:26, 4.44it/s]
317
  0%| | 14/4660 [00:04<20:38, 3.75it/s]
318
  0%| | 15/4660 [00:04<21:00, 3.69it/s]
319
  0%| | 16/4660 [00:04<19:19, 4.00it/s]
320
  0%| | 17/4660 [00:04<17:39, 4.38it/s]
321
  0%| | 18/4660 [00:05<20:50, 3.71it/s]
322
  0%| | 19/4660 [00:05<19:27, 3.97it/s]
323
  0%| | 20/4660 [00:05<18:28, 4.19it/s]
324
  0%| | 21/4660 [00:05<20:44, 3.73it/s]
325
  0%| | 22/4660 [00:06<19:03, 4.06it/s]
326
  0%| | 23/4660 [00:06<17:53, 4.32it/s]
327
  1%| | 24/4660 [00:06<17:54, 4.32it/s]
328
  1%| | 25/4660 [00:06<18:33, 4.16it/s]
329
  1%| | 26/4660 [00:07<17:33, 4.40it/s]
330
  1%| | 27/4660 [00:07<17:51, 4.32it/s]
331
  1%| | 28/4660 [00:07<16:34, 4.66it/s]
332
  1%| | 29/4660 [00:07<15:57, 4.83it/s]
333
  1%| | 30/4660 [00:07<16:07, 4.78it/s]
334
  1%| | 31/4660 [00:08<16:14, 4.75it/s]
335
  1%| | 32/4660 [00:08<16:14, 4.75it/s]
336
  1%| | 33/4660 [00:08<16:45, 4.60it/s]
337
  1%| | 34/4660 [00:08<19:39, 3.92it/s]
338
  1%| | 35/4660 [00:09<18:34, 4.15it/s]
339
  1%| | 36/4660 [00:09<18:26, 4.18it/s]
340
  1%| | 37/4660 [00:09<18:43, 4.12it/s]
341
  1%| | 38/4660 [00:09<20:40, 3.72it/s]
342
  1%| | 39/4660 [00:10<19:12, 4.01it/s]
343
  1%| | 40/4660 [00:10<18:31, 4.16it/s]
344
  1%| | 41/4660 [00:10<17:29, 4.40it/s]
345
  1%| | 42/4660 [00:10<19:12, 4.01it/s]
346
  1%| | 43/4660 [00:11<18:12, 4.23it/s]
347
  1%| | 44/4660 [00:11<21:29, 3.58it/s]
348
  1%| | 45/4660 [00:11<21:53, 3.51it/s]
349
  1%| | 46/4660 [00:11<20:42, 3.71it/s]
350
  1%| | 47/4660 [00:12<19:22, 3.97it/s]
351
  1%| | 48/4660 [00:12<23:12, 3.31it/s]
352
  1%| | 49/4660 [00:12<21:22, 3.60it/s]
353
  1%| | 50/4660 [00:12<19:14, 3.99it/s]
354
  1%| | 51/4660 [00:13<18:44, 4.10it/s]
355
  1%| | 52/4660 [00:13<17:39, 4.35it/s]
356
  1%| | 53/4660 [00:13<18:35, 4.13it/s]
357
  1%| | 54/4660 [00:13<18:55, 4.05it/s]
358
  1%| | 55/4660 [00:14<20:05, 3.82it/s]
359
  1%| | 56/4660 [00:14<21:45, 3.53it/s]
360
  1%| | 57/4660 [00:14<20:49, 3.68it/s]
361
  1%| | 58/4660 [00:15<20:21, 3.77it/s]
362
  1%|▏ | 59/4660 [00:15<19:43, 3.89it/s]
363
  1%|▏ | 60/4660 [00:15<19:56, 3.84it/s]
364
  1%|▏ | 61/4660 [00:15<19:42, 3.89it/s]
365
  1%|▏ | 62/4660 [00:16<19:03, 4.02it/s]
366
  1%|▏ | 63/4660 [00:16<18:41, 4.10it/s]
367
  1%|▏ | 64/4660 [00:16<18:09, 4.22it/s]
368
  1%|▏ | 65/4660 [00:16<18:14, 4.20it/s]
369
  1%|▏ | 66/4660 [00:16<18:04, 4.23it/s]
370
  1%|▏ | 67/4660 [00:17<17:33, 4.36it/s]
371
  1%|▏ | 68/4660 [00:17<17:10, 4.46it/s]
372
  1%|▏ | 69/4660 [00:17<18:06, 4.23it/s]
373
  2%|▏ | 70/4660 [00:17<18:00, 4.25it/s]
374
  2%|▏ | 71/4660 [00:18<16:22, 4.67it/s]
375
  2%|▏ | 72/4660 [00:18<15:20, 4.98it/s]
376
  2%|▏ | 73/4660 [00:18<16:40, 4.58it/s]
377
  2%|▏ | 74/4660 [00:18<16:15, 4.70it/s]
378
  2%|▏ | 75/4660 [00:18<16:16, 4.69it/s]
379
  2%|▏ | 76/4660 [00:19<16:27, 4.64it/s]
380
  2%|▏ | 77/4660 [00:19<17:08, 4.46it/s]
381
  2%|▏ | 78/4660 [00:19<18:20, 4.16it/s]
382
  2%|▏ | 79/4660 [00:19<19:21, 3.94it/s]
383
  2%|▏ | 80/4660 [00:20<21:07, 3.61it/s]
384
  2%|▏ | 81/4660 [00:20<19:12, 3.97it/s]
385
  2%|▏ | 82/4660 [00:20<18:12, 4.19it/s]
386
  2%|▏ | 83/4660 [00:20<17:32, 4.35it/s]
387
  2%|▏ | 84/4660 [00:21<17:42, 4.31it/s]
388
  2%|▏ | 85/4660 [00:21<17:29, 4.36it/s]
389
  2%|▏ | 86/4660 [00:21<16:29, 4.62it/s]
390
  2%|▏ | 87/4660 [00:21<18:52, 4.04it/s]
391
  2%|▏ | 88/4660 [00:21<16:59, 4.49it/s]
392
  2%|▏ | 89/4660 [00:22<18:24, 4.14it/s]
393
  2%|▏ | 90/4660 [00:22<20:54, 3.64it/s]
394
  2%|▏ | 91/4660 [00:23<24:11, 3.15it/s]
395
  2%|▏ | 92/4660 [00:23<21:45, 3.50it/s]
396
  2%|▏ | 93/4660 [00:23<22:19, 3.41it/s]
397
  2%|▏ | 94/4660 [00:23<19:40, 3.87it/s]
398
  2%|▏ | 95/4660 [00:24<19:48, 3.84it/s]
399
  2%|▏ | 96/4660 [00:24<17:48, 4.27it/s]
400
  2%|▏ | 97/4660 [00:24<19:11, 3.96it/s]
401
  2%|▏ | 98/4660 [00:24<22:58, 3.31it/s]
402
  2%|▏ | 99/4660 [00:25<22:14, 3.42it/s]
403
  2%|▏ | 100/4660 [00:25<19:49, 3.83it/s]
404
  2%|▏ | 101/4660 [00:25<25:31, 2.98it/s]
405
  2%|▏ | 102/4660 [00:26<26:36, 2.86it/s]
406
  2%|▏ | 103/4660 [00:26<23:54, 3.18it/s]
407
  2%|▏ | 104/4660 [00:26<22:52, 3.32it/s]
408
  2%|▏ | 105/4660 [00:27<21:54, 3.46it/s]
409
  2%|▏ | 106/4660 [00:27<20:32, 3.70it/s]
410
  2%|▏ | 107/4660 [00:27<18:56, 4.01it/s]
411
  2%|▏ | 108/4660 [00:27<19:02, 3.98it/s]
412
  2%|▏ | 109/4660 [00:27<19:34, 3.87it/s]
413
  2%|▏ | 110/4660 [00:28<20:13, 3.75it/s]
414
  2%|▏ | 111/4660 [00:28<20:10, 3.76it/s]
415
  2%|▏ | 112/4660 [00:28<22:03, 3.44it/s]
416
  2%|▏ | 113/4660 [00:29<20:01, 3.79it/s]
417
  2%|▏ | 114/4660 [00:29<18:18, 4.14it/s]
418
  2%|▏ | 115/4660 [00:29<17:37, 4.30it/s]
419
  2%|▏ | 116/4660 [00:29<18:08, 4.17it/s]
420
  3%|▎ | 117/4660 [00:29<18:09, 4.17it/s]
421
  3%|▎ | 118/4660 [00:30<17:44, 4.27it/s]
422
  3%|▎ | 119/4660 [00:30<17:01, 4.45it/s]
423
  3%|▎ | 120/4660 [00:30<18:03, 4.19it/s]
424
  3%|▎ | 121/4660 [00:31<22:14, 3.40it/s]
425
  3%|▎ | 122/4660 [00:31<18:58, 3.99it/s]
426
  3%|▎ | 123/4660 [00:31<17:39, 4.28it/s]
427
  3%|▎ | 124/4660 [00:31<18:21, 4.12it/s]
428
  3%|▎ | 125/4660 [00:32<20:21, 3.71it/s]
429
  3%|▎ | 126/4660 [00:32<19:01, 3.97it/s]
430
  3%|▎ | 127/4660 [00:32<19:01, 3.97it/s]
431
  3%|▎ | 128/4660 [00:33<25:02, 3.02it/s]
432
  3%|▎ | 129/4660 [00:33<24:47, 3.05it/s]
433
  3%|▎ | 130/4660 [00:33<22:15, 3.39it/s]
434
  3%|▎ | 131/4660 [00:33<19:59, 3.78it/s]
435
  3%|▎ | 132/4660 [00:33<18:21, 4.11it/s]
436
  3%|▎ | 133/4660 [00:34<17:37, 4.28it/s]
437
  3%|▎ | 134/4660 [00:34<16:23, 4.60it/s]
438
  3%|▎ | 135/4660 [00:34<19:48, 3.81it/s]
439
  3%|▎ | 136/4660 [00:34<18:55, 3.98it/s]
440
  3%|▎ | 137/4660 [00:35<20:53, 3.61it/s]
441
  3%|▎ | 138/4660 [00:35<19:36, 3.84it/s]
442
  3%|▎ | 139/4660 [00:35<18:25, 4.09it/s]
443
  3%|▎ | 140/4660 [00:35<17:29, 4.31it/s]
444
  3%|▎ | 141/4660 [00:36<17:08, 4.39it/s]
445
  3%|▎ | 142/4660 [00:36<17:51, 4.22it/s]
446
  3%|▎ | 143/4660 [00:36<18:51, 3.99it/s]
447
  3%|▎ | 144/4660 [00:36<17:07, 4.40it/s]
448
  3%|▎ | 145/4660 [00:37<27:46, 2.71it/s]
449
  3%|▎ | 146/4660 [00:37<26:18, 2.86it/s]
450
  3%|▎ | 147/4660 [00:38<22:38, 3.32it/s]
451
  3%|▎ | 148/4660 [00:38<20:50, 3.61it/s]
452
  3%|▎ | 149/4660 [00:38<19:53, 3.78it/s]
453
  3%|▎ | 150/4660 [00:38<18:28, 4.07it/s]
454
  3%|▎ | 151/4660 [00:38<17:53, 4.20it/s]
455
  3%|▎ | 152/4660 [00:39<18:02, 4.16it/s]
456
  3%|▎ | 153/4660 [00:39<19:24, 3.87it/s]
457
  3%|▎ | 154/4660 [00:39<20:03, 3.75it/s]
458
  3%|▎ | 155/4660 [00:39<19:18, 3.89it/s]
459
  3%|▎ | 156/4660 [00:40<18:15, 4.11it/s]
460
  3%|▎ | 157/4660 [00:40<17:25, 4.31it/s]
461
  3%|▎ | 158/4660 [00:40<18:31, 4.05it/s]
462
  3%|▎ | 159/4660 [00:40<18:12, 4.12it/s]
463
  3%|▎ | 160/4660 [00:41<25:45, 2.91it/s]
464
  3%|▎ | 161/4660 [00:41<22:53, 3.28it/s]
465
  3%|▎ | 162/4660 [00:42<23:45, 3.16it/s]
466
  3%|▎ | 163/4660 [00:42<24:15, 3.09it/s]
467
  4%|▎ | 164/4660 [00:42<22:14, 3.37it/s]
468
  4%|▎ | 165/4660 [00:42<19:54, 3.76it/s]
469
  4%|▎ | 166/4660 [00:42<17:49, 4.20it/s]
470
  4%|▎ | 167/4660 [00:43<17:15, 4.34it/s]
471
  4%|▎ | 168/4660 [00:43<16:43, 4.48it/s]
472
  4%|▎ | 169/4660 [00:43<18:37, 4.02it/s]
473
  4%|▎ | 170/4660 [00:43<17:49, 4.20it/s]
474
  4%|▎ | 171/4660 [00:44<21:50, 3.42it/s]
475
  4%|▎ | 172/4660 [00:44<20:03, 3.73it/s]
476
  4%|▎ | 173/4660 [00:45<29:51, 2.50it/s]
477
  4%|▎ | 174/4660 [00:45<26:06, 2.86it/s]
478
  4%|▍ | 175/4660 [00:45<24:26, 3.06it/s]
479
  4%|▍ | 176/4660 [00:45<22:17, 3.35it/s]
480
  4%|▍ | 177/4660 [00:46<20:35, 3.63it/s]
481
  4%|▍ | 178/4660 [00:46<20:38, 3.62it/s]
482
  4%|▍ | 179/4660 [00:46<20:16, 3.68it/s]
483
  4%|▍ | 180/4660 [00:47<21:00, 3.55it/s]
484
  4%|▍ | 181/4660 [00:47<20:15, 3.68it/s]
485
  4%|▍ | 182/4660 [00:47<21:45, 3.43it/s]
486
  4%|▍ | 183/4660 [00:47<20:07, 3.71it/s]
487
  4%|▍ | 184/4660 [00:48<18:09, 4.11it/s]
488
  4%|▍ | 185/4660 [00:48<16:50, 4.43it/s]
489
  4%|▍ | 186/4660 [00:48<18:14, 4.09it/s]
490
  4%|▍ | 187/4660 [00:48<17:38, 4.23it/s]
491
  4%|▍ | 188/4660 [00:48<16:53, 4.41it/s]
492
  4%|▍ | 189/4660 [00:49<16:06, 4.63it/s]
493
  4%|▍ | 190/4660 [00:49<15:06, 4.93it/s]
494
  4%|▍ | 191/4660 [00:49<17:09, 4.34it/s]
495
  4%|▍ | 192/4660 [00:49<17:16, 4.31it/s]
496
  4%|▍ | 193/4660 [00:50<19:17, 3.86it/s]
497
  4%|▍ | 194/4660 [00:50<19:16, 3.86it/s]
498
  4%|▍ | 195/4660 [00:50<19:39, 3.79it/s]
499
  4%|▍ | 196/4660 [00:51<20:57, 3.55it/s]
500
  4%|▍ | 197/4660 [00:51<19:27, 3.82it/s]
501
  4%|▍ | 198/4660 [00:51<20:08, 3.69it/s]
502
  4%|▍ | 199/4660 [00:51<20:15, 3.67it/s]
503
  4%|▍ | 200/4660 [00:51<18:11, 4.08it/s]
504
  4%|▍ | 201/4660 [00:52<17:03, 4.36it/s]
505
  4%|▍ | 202/4660 [00:52<15:46, 4.71it/s]
506
  4%|▍ | 203/4660 [00:52<17:26, 4.26it/s]
507
  4%|▍ | 204/4660 [00:52<17:39, 4.21it/s]
508
  4%|▍ | 205/4660 [00:53<17:49, 4.17it/s]
509
  4%|▍ | 206/4660 [00:53<17:01, 4.36it/s]
510
  4%|▍ | 207/4660 [00:53<19:51, 3.74it/s]
511
  4%|▍ | 208/4660 [00:53<17:27, 4.25it/s]
512
  4%|▍ | 209/4660 [00:54<18:04, 4.10it/s]
513
  5%|▍ | 210/4660 [00:54<17:50, 4.16it/s]
514
  5%|▍ | 211/4660 [00:54<23:08, 3.20it/s]
515
  5%|▍ | 212/4660 [00:55<22:53, 3.24it/s]
516
  5%|▍ | 213/4660 [00:55<20:12, 3.67it/s]
517
  5%|▍ | 214/4660 [00:55<17:57, 4.12it/s]
518
  5%|▍ | 215/4660 [00:55<17:20, 4.27it/s]
519
  5%|▍ | 216/4660 [00:55<18:25, 4.02it/s]
520
  5%|▍ | 217/4660 [00:56<16:47, 4.41it/s]
521
  5%|▍ | 218/4660 [00:56<18:09, 4.08it/s]
522
  5%|▍ | 219/4660 [00:56<16:55, 4.37it/s]
523
  5%|▍ | 220/4660 [00:56<17:04, 4.33it/s]
524
  5%|▍ | 221/4660 [00:57<16:34, 4.46it/s]
525
  5%|▍ | 222/4660 [00:57<18:02, 4.10it/s]
526
  5%|▍ | 223/4660 [00:57<17:44, 4.17it/s]
527
  5%|▍ | 224/4660 [00:57<16:55, 4.37it/s]
528
  5%|▍ | 225/4660 [00:57<15:56, 4.64it/s]
529
  5%|▍ | 226/4660 [00:58<15:52, 4.66it/s]
530
  5%|▍ | 227/4660 [00:58<19:42, 3.75it/s]
531
  5%|▍ | 228/4660 [00:58<18:53, 3.91it/s]
532
  5%|▍ | 229/4660 [00:59<19:43, 3.74it/s]
533
  5%|▍ | 230/4660 [00:59<19:11, 3.85it/s]
534
  5%|▍ | 231/4660 [00:59<17:37, 4.19it/s]
535
  5%|▍ | 232/4660 [00:59<18:03, 4.09it/s]
536
  5%|▌ | 233/4660 [00:59<16:43, 4.41it/s]
537
  5%|▌ | 234/4660 [01:00<16:36, 4.44it/s]
538
  5%|▌ | 235/4660 [01:00<16:11, 4.56it/s]
539
  5%|▌ | 236/4660 [01:00<16:56, 4.35it/s]
540
  5%|▌ | 237/4660 [01:01<25:56, 2.84it/s]
541
  5%|▌ | 238/4660 [01:01<23:02, 3.20it/s]
542
  5%|▌ | 239/4660 [01:01<21:23, 3.44it/s]
543
  5%|▌ | 240/4660 [01:02<21:35, 3.41it/s]
544
  5%|▌ | 241/4660 [01:02<23:04, 3.19it/s]
545
  5%|▌ | 242/4660 [01:02<20:12, 3.64it/s]
546
  5%|▌ | 243/4660 [01:02<19:45, 3.72it/s]
547
  5%|▌ | 244/4660 [01:03<17:13, 4.27it/s]
548
  5%|▌ | 245/4660 [01:03<19:53, 3.70it/s]
549
  5%|▌ | 246/4660 [01:03<21:04, 3.49it/s]
550
  5%|▌ | 247/4660 [01:03<20:00, 3.68it/s]
551
  5%|▌ | 248/4660 [01:04<19:46, 3.72it/s]
552
  5%|▌ | 249/4660 [01:04<18:03, 4.07it/s]
553
  5%|▌ | 250/4660 [01:04<17:19, 4.24it/s]
554
  5%|▌ | 251/4660 [01:04<18:34, 3.96it/s]
555
  5%|▌ | 252/4660 [01:05<18:59, 3.87it/s]
556
  5%|▌ | 253/4660 [01:05<17:01, 4.31it/s]
557
  5%|▌ | 254/4660 [01:05<17:06, 4.29it/s]
558
  5%|▌ | 255/4660 [01:05<16:51, 4.35it/s]
559
  5%|▌ | 256/4660 [01:06<17:18, 4.24it/s]
560
  6%|▌ | 257/4660 [01:06<17:30, 4.19it/s]
561
  6%|▌ | 258/4660 [01:06<17:11, 4.27it/s]
562
  6%|▌ | 259/4660 [01:06<16:27, 4.46it/s]
563
  6%|▌ | 260/4660 [01:06<16:39, 4.40it/s]
564
  6%|▌ | 261/4660 [01:07<15:55, 4.60it/s]
565
  6%|▌ | 262/4660 [01:07<16:32, 4.43it/s]
566
  6%|▌ | 263/4660 [01:07<19:06, 3.83it/s]
567
  6%|▌ | 264/4660 [01:08<20:06, 3.64it/s]
568
  6%|▌ | 265/4660 [01:08<21:50, 3.35it/s]
569
  6%|▌ | 266/4660 [01:08<20:52, 3.51it/s]
570
  6%|▌ | 267/4660 [01:08<20:13, 3.62it/s]
571
  6%|▌ | 268/4660 [01:09<18:47, 3.90it/s]
572
  6%|▌ | 269/4660 [01:09<17:36, 4.15it/s]
573
  6%|▌ | 270/4660 [01:09<17:29, 4.18it/s]
574
  6%|▌ | 271/4660 [01:09<17:57, 4.07it/s]
575
  6%|▌ | 272/4660 [01:10<17:37, 4.15it/s]
576
  6%|▌ | 273/4660 [01:10<17:53, 4.09it/s]
577
  6%|▌ | 274/4660 [01:10<17:00, 4.30it/s]
578
  6%|▌ | 275/4660 [01:10<16:35, 4.40it/s]
579
  6%|▌ | 276/4660 [01:10<16:42, 4.37it/s]
580
  6%|▌ | 277/4660 [01:11<18:03, 4.05it/s]
581
  6%|▌ | 278/4660 [01:11<19:03, 3.83it/s]
582
  6%|▌ | 279/4660 [01:11<17:11, 4.25it/s]
583
  6%|▌ | 280/4660 [01:11<17:08, 4.26it/s]
584
  6%|▌ | 281/4660 [01:12<17:17, 4.22it/s]
585
  6%|▌ | 282/4660 [01:12<18:01, 4.05it/s]
586
  6%|▌ | 283/4660 [01:13<33:01, 2.21it/s]
587
  6%|▌ | 284/4660 [01:13<28:47, 2.53it/s]
588
  6%|▌ | 285/4660 [01:13<27:31, 2.65it/s]
589
  6%|▌ | 286/4660 [01:14<23:58, 3.04it/s]
590
  6%|▌ | 287/4660 [01:14<21:26, 3.40it/s]
591
  6%|▌ | 288/4660 [01:14<19:32, 3.73it/s]
592
  6%|▌ | 289/4660 [01:14<18:26, 3.95it/s]
593
  6%|▌ | 290/4660 [01:15<18:12, 4.00it/s]
594
  6%|▌ | 291/4660 [01:15<18:36, 3.91it/s]
595
  6%|▋ | 292/4660 [01:15<18:20, 3.97it/s]
596
  6%|▋ | 293/4660 [01:15<16:32, 4.40it/s]
597
  6%|▋ | 294/4660 [01:15<17:01, 4.28it/s]
598
  6%|▋ | 295/4660 [01:16<16:54, 4.30it/s]
599
  6%|▋ | 296/4660 [01:16<19:33, 3.72it/s]
600
  6%|▋ | 297/4660 [01:16<18:00, 4.04it/s]
601
  6%|▋ | 298/4660 [01:16<16:52, 4.31it/s]
602
  6%|▋ | 299/4660 [01:17<18:22, 3.95it/s]
603
  6%|▋ | 300/4660 [01:17<19:28, 3.73it/s]
604
  6%|▋ | 301/4660 [01:17<18:59, 3.82it/s]
605
  6%|▋ | 302/4660 [01:18<18:53, 3.84it/s]
606
  7%|▋ | 303/4660 [01:18<17:42, 4.10it/s]
607
  7%|▋ | 304/4660 [01:18<17:11, 4.22it/s]
608
  7%|▋ | 305/4660 [01:18<18:49, 3.86it/s]
609
  7%|▋ | 306/4660 [01:18<16:58, 4.27it/s]
610
  7%|▋ | 307/4660 [01:19<17:22, 4.17it/s]
611
  7%|▋ | 308/4660 [01:19<18:16, 3.97it/s]
612
  7%|▋ | 309/4660 [01:19<18:57, 3.83it/s]
613
  7%|▋ | 310/4660 [01:20<17:44, 4.09it/s]
614
  7%|▋ | 311/4660 [01:20<18:09, 3.99it/s]
615
  7%|▋ | 312/4660 [01:20<17:54, 4.05it/s]
616
  7%|▋ | 313/4660 [01:20<17:42, 4.09it/s]
617
  7%|▋ | 314/4660 [01:20<17:19, 4.18it/s]
618
  7%|▋ | 315/4660 [01:21<18:42, 3.87it/s]
619
  7%|▋ | 316/4660 [01:21<17:06, 4.23it/s]
620
  7%|▋ | 317/4660 [01:21<15:49, 4.58it/s]
621
  7%|▋ | 318/4660 [01:21<15:00, 4.82it/s]
622
  7%|▋ | 319/4660 [01:22<15:03, 4.80it/s]
623
  7%|▋ | 320/4660 [01:22<14:26, 5.01it/s]
624
  7%|▋ | 321/4660 [01:22<17:21, 4.17it/s]
625
  7%|▋ | 322/4660 [01:22<16:51, 4.29it/s]
626
  7%|▋ | 323/4660 [01:23<18:51, 3.83it/s]
627
  7%|▋ | 324/4660 [01:23<21:04, 3.43it/s]
628
  7%|▋ | 325/4660 [01:23<21:24, 3.37it/s]
629
  7%|▋ | 326/4660 [01:24<20:49, 3.47it/s]
630
  7%|▋ | 327/4660 [01:24<19:49, 3.64it/s]
631
  7%|▋ | 328/4660 [01:24<21:37, 3.34it/s]
632
  7%|▋ | 329/4660 [01:24<22:11, 3.25it/s]
633
  7%|▋ | 330/4660 [01:25<20:35, 3.51it/s]
634
  7%|▋ | 331/4660 [01:25<19:01, 3.79it/s]
635
  7%|▋ | 332/4660 [01:25<18:31, 3.90it/s]
636
  7%|▋ | 333/4660 [01:25<17:06, 4.22it/s]
637
  7%|▋ | 334/4660 [01:26<15:52, 4.54it/s]
638
  7%|▋ | 335/4660 [01:26<15:30, 4.65it/s]
639
  7%|▋ | 336/4660 [01:26<19:12, 3.75it/s]
640
  7%|▋ | 337/4660 [01:26<20:20, 3.54it/s]
641
  7%|▋ | 338/4660 [01:27<18:33, 3.88it/s]
642
  7%|▋ | 339/4660 [01:27<19:07, 3.77it/s]
643
  7%|▋ | 340/4660 [01:27<19:09, 3.76it/s]
644
  7%|▋ | 341/4660 [01:27<19:37, 3.67it/s]
645
  7%|▋ | 342/4660 [01:28<19:34, 3.68it/s]
646
  7%|▋ | 343/4660 [01:28<20:32, 3.50it/s]
647
  7%|▋ | 344/4660 [01:28<19:12, 3.74it/s]
648
  7%|▋ | 345/4660 [01:29<18:17, 3.93it/s]
649
  7%|▋ | 346/4660 [01:29<17:31, 4.10it/s]
650
  7%|▋ | 347/4660 [01:29<16:39, 4.32it/s]
651
  7%|▋ | 348/4660 [01:29<16:56, 4.24it/s]
652
  7%|▋ | 349/4660 [01:29<16:01, 4.48it/s]
653
  8%|▊ | 350/4660 [01:30<15:54, 4.52it/s]
654
  8%|▊ | 351/4660 [01:30<16:11, 4.44it/s]
655
  8%|▊ | 352/4660 [01:30<16:38, 4.31it/s]
656
  8%|▊ | 353/4660 [01:30<15:39, 4.58it/s]
657
  8%|▊ | 354/4660 [01:30<15:43, 4.56it/s]
658
  8%|▊ | 355/4660 [01:31<16:23, 4.38it/s]
659
  8%|▊ | 356/4660 [01:31<16:50, 4.26it/s]
660
  8%|▊ | 357/4660 [01:31<17:43, 4.05it/s]
661
  8%|▊ | 358/4660 [01:32<19:18, 3.71it/s]
662
  8%|▊ | 359/4660 [01:32<17:18, 4.14it/s]
663
  8%|▊ | 360/4660 [01:32<19:29, 3.68it/s]
664
  8%|▊ | 361/4660 [01:32<19:41, 3.64it/s]
665
  8%|▊ | 362/4660 [01:33<18:05, 3.96it/s]
666
  8%|▊ | 363/4660 [01:33<18:02, 3.97it/s]
667
  8%|▊ | 364/4660 [01:33<19:01, 3.76it/s]
668
  8%|▊ | 365/4660 [01:33<18:20, 3.90it/s]
669
  8%|▊ | 366/4660 [01:34<17:07, 4.18it/s]
670
  8%|▊ | 367/4660 [01:34<16:10, 4.42it/s]
671
  8%|▊ | 368/4660 [01:34<17:07, 4.18it/s]
672
  8%|▊ | 369/4660 [01:34<16:08, 4.43it/s]
673
  8%|▊ | 370/4660 [01:34<15:32, 4.60it/s]
674
  8%|▊ | 371/4660 [01:35<17:52, 4.00it/s]
675
  8%|▊ | 372/4660 [01:35<16:37, 4.30it/s]
676
  8%|▊ | 373/4660 [01:35<18:36, 3.84it/s]
677
  8%|▊ | 374/4660 [01:35<17:34, 4.06it/s]
678
  8%|▊ | 375/4660 [01:36<16:32, 4.32it/s]
679
  8%|▊ | 376/4660 [01:36<16:06, 4.43it/s]
680
  8%|▊ | 377/4660 [01:36<16:35, 4.30it/s]
681
  8%|▊ | 378/4660 [01:36<17:19, 4.12it/s]
682
  8%|▊ | 379/4660 [01:37<18:22, 3.88it/s]
683
  8%|▊ | 380/4660 [01:37<17:23, 4.10it/s]
684
  8%|▊ | 381/4660 [01:37<16:29, 4.32it/s]
685
  8%|▊ | 382/4660 [01:37<18:57, 3.76it/s]
686
  8%|▊ | 383/4660 [01:38<17:17, 4.12it/s]
687
  8%|▊ | 384/4660 [01:38<17:11, 4.15it/s]
688
  8%|▊ | 385/4660 [01:38<15:58, 4.46it/s]
689
  8%|▊ | 386/4660 [01:38<16:50, 4.23it/s]
690
  8%|▊ | 387/4660 [01:39<19:30, 3.65it/s]
691
  8%|▊ | 388/4660 [01:39<19:00, 3.74it/s]
692
  8%|▊ | 389/4660 [01:39<22:05, 3.22it/s]
693
  8%|▊ | 390/4660 [01:40<20:15, 3.51it/s]
694
  8%|▊ | 391/4660 [01:40<18:00, 3.95it/s]
695
  8%|▊ | 392/4660 [01:40<17:34, 4.05it/s]
696
  8%|▊ | 393/4660 [01:40<16:33, 4.29it/s]
697
  8%|▊ | 394/4660 [01:40<15:36, 4.56it/s]
698
  8%|▊ | 395/4660 [01:41<16:03, 4.43it/s]
699
  8%|▊ | 396/4660 [01:41<18:03, 3.94it/s]
700
  9%|▊ | 397/4660 [01:41<17:34, 4.04it/s]
701
  9%|▊ | 398/4660 [01:41<16:19, 4.35it/s]
702
  9%|▊ | 399/4660 [01:42<15:56, 4.46it/s]
703
  9%|▊ | 400/4660 [01:42<15:27, 4.59it/s]
704
  9%|▊ | 401/4660 [01:42<15:22, 4.62it/s]
705
  9%|▊ | 402/4660 [01:42<15:11, 4.67it/s]
706
  9%|▊ | 403/4660 [01:42<14:31, 4.88it/s]
707
  9%|▊ | 404/4660 [01:43<13:49, 5.13it/s]
708
  9%|▊ | 405/4660 [01:43<13:42, 5.18it/s]
709
  9%|▊ | 406/4660 [01:43<13:53, 5.11it/s]
710
  9%|▊ | 407/4660 [01:43<14:43, 4.82it/s]
711
  9%|▉ | 408/4660 [01:44<18:10, 3.90it/s]
712
  9%|▉ | 409/4660 [01:44<18:19, 3.87it/s]
713
  9%|▉ | 410/4660 [01:44<16:55, 4.19it/s]
714
  9%|▉ | 411/4660 [01:44<16:34, 4.27it/s]
715
  9%|▉ | 412/4660 [01:44<15:43, 4.50it/s]
716
  9%|▉ | 413/4660 [01:45<16:21, 4.33it/s]
717
  9%|▉ | 414/4660 [01:45<17:06, 4.13it/s]
718
  9%|▉ | 415/4660 [01:45<18:21, 3.85it/s]
719
  9%|▉ | 416/4660 [01:46<18:37, 3.80it/s]
720
  9%|▉ | 417/4660 [01:46<20:12, 3.50it/s]
721
  9%|▉ | 418/4660 [01:46<19:52, 3.56it/s]
722
  9%|▉ | 419/4660 [01:46<18:10, 3.89it/s]
723
  9%|▉ | 420/4660 [01:47<17:26, 4.05it/s]
724
  9%|▉ | 421/4660 [01:47<18:46, 3.76it/s]
725
  9%|▉ | 422/4660 [01:47<17:24, 4.06it/s]
726
  9%|▉ | 423/4660 [01:47<18:08, 3.89it/s]
727
  9%|▉ | 424/4660 [01:48<17:24, 4.06it/s]
728
  9%|▉ | 425/4660 [01:48<16:35, 4.26it/s]
729
  9%|▉ | 426/4660 [01:48<16:44, 4.21it/s]
730
  9%|▉ | 427/4660 [01:48<16:32, 4.26it/s]
731
  9%|▉ | 428/4660 [01:48<15:43, 4.49it/s]
732
  9%|▉ | 429/4660 [01:49<15:12, 4.64it/s]
733
  9%|▉ | 430/4660 [01:49<14:26, 4.88it/s]
734
  9%|▉ | 431/4660 [01:49<17:06, 4.12it/s]
735
  9%|▉ | 432/4660 [01:49<17:05, 4.12it/s]
736
  9%|▉ | 433/4660 [01:50<17:57, 3.92it/s]
737
  9%|▉ | 434/4660 [01:50<17:38, 3.99it/s]
738
  9%|▉ | 435/4660 [01:50<16:49, 4.19it/s]
739
  9%|▉ | 436/4660 [01:50<16:16, 4.33it/s]
740
  9%|▉ | 437/4660 [01:51<15:52, 4.43it/s]
741
  9%|▉ | 438/4660 [01:51<15:30, 4.54it/s]
742
  9%|▉ | 439/4660 [01:51<16:01, 4.39it/s]
743
  9%|▉ | 440/4660 [01:51<16:31, 4.26it/s]
744
  9%|▉ | 441/4660 [01:51<15:35, 4.51it/s]
745
  9%|▉ | 442/4660 [01:52<22:06, 3.18it/s]
746
  10%|▉ | 443/4660 [01:52<19:45, 3.56it/s]
747
  10%|▉ | 444/4660 [01:52<19:25, 3.62it/s]
748
  10%|▉ | 445/4660 [01:53<19:08, 3.67it/s]
749
  10%|▉ | 446/4660 [01:53<17:40, 3.97it/s]
750
  10%|▉ | 447/4660 [01:53<19:30, 3.60it/s]
751
  10%|▉ | 448/4660 [01:54<20:24, 3.44it/s]
752
  10%|▉ | 449/4660 [01:54<18:35, 3.78it/s]
753
  10%|▉ | 450/4660 [01:54<21:35, 3.25it/s]
754
  10%|▉ | 451/4660 [01:54<20:15, 3.46it/s]
755
  10%|▉ | 452/4660 [01:55<19:27, 3.60it/s]
756
  10%|▉ | 453/4660 [01:55<20:21, 3.44it/s]
757
  10%|▉ | 454/4660 [01:55<18:20, 3.82it/s]
758
  10%|▉ | 455/4660 [01:55<17:41, 3.96it/s]
759
  10%|▉ | 456/4660 [01:56<17:16, 4.06it/s]
760
  10%|▉ | 457/4660 [01:56<17:12, 4.07it/s]
761
  10%|▉ | 458/4660 [01:56<16:36, 4.22it/s]
762
  10%|▉ | 459/4660 [01:57<25:20, 2.76it/s]
763
  10%|▉ | 460/4660 [01:57<22:38, 3.09it/s]
764
  10%|▉ | 461/4660 [01:57<23:28, 2.98it/s]
765
  10%|▉ | 462/4660 [01:58<20:07, 3.48it/s]
766
  10%|▉ | 463/4660 [01:58<18:55, 3.69it/s]
767
  10%|▉ | 464/4660 [01:58<18:08, 3.85it/s]
768
  10%|▉ | 465/4660 [01:58<17:20, 4.03it/s]
769
  10%|█ | 466/4660 [01:58<16:28, 4.24it/s][INFO|trainer.py:811] 2024-09-05 23:13:48,410 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
770
+ [INFO|trainer.py:3819] 2024-09-05 23:13:48,412 >>
771
+ ***** Running Evaluation *****
772
+ [INFO|trainer.py:3821] 2024-09-05 23:13:48,412 >> Num examples = 6810
773
+ [INFO|trainer.py:3824] 2024-09-05 23:13:48,412 >> Batch size = 8
774
+
775
+
776
  0%| | 0/852 [00:00<?, ?it/s]
777
+
778
  1%| | 9/852 [00:00<00:09, 87.04it/s]
779
+
780
  2%|▏ | 18/852 [00:00<00:10, 78.62it/s]
781
+
782
  3%|▎ | 27/852 [00:00<00:10, 79.58it/s]
783
+
784
  4%|▍ | 35/852 [00:00<00:10, 78.85it/s]
785
+
786
  5%|▌ | 44/852 [00:00<00:10, 80.12it/s]
787
+
788
  6%|▌ | 53/852 [00:00<00:09, 81.95it/s]
789
+
790
  7%|▋ | 62/852 [00:00<00:09, 82.52it/s]
791
+
792
  8%|▊ | 71/852 [00:00<00:09, 78.94it/s]
793
+
794
  9%|▉ | 80/852 [00:01<00:09, 78.84it/s]
795
+
796
  10%|█ | 89/852 [00:01<00:09, 79.94it/s]
797
+
798
  12%|█▏ | 98/852 [00:01<00:09, 80.24it/s]
799
+
800
  13%|█▎ | 107/852 [00:01<00:09, 79.96it/s]
801
+
802
  14%|█▎ | 116/852 [00:01<00:09, 80.61it/s]
803
+
804
  15%|█▍ | 125/852 [00:01<00:08, 82.16it/s]
805
+
806
  16%|█▌ | 134/852 [00:01<00:09, 77.87it/s]
807
+
808
  17%|█▋ | 142/852 [00:01<00:09, 78.16it/s]
809
+
810
  18%|█▊ | 150/852 [00:01<00:09, 77.25it/s]
811
+
812
  19%|█▊ | 159/852 [00:01<00:08, 79.08it/s]
813
+
814
  20%|█▉ | 168/852 [00:02<00:08, 80.30it/s]
815
+
816
  21%|██ | 177/852 [00:02<00:08, 80.70it/s]
817
+
818
  22%|██▏ | 186/852 [00:02<00:08, 81.77it/s]
819
+
820
  23%|██▎ | 195/852 [00:02<00:08, 80.23it/s]
821
+
822
  24%|██▍ | 204/852 [00:02<00:07, 81.02it/s]
823
+
824
  25%|██▌ | 213/852 [00:02<00:07, 80.19it/s]
825
+
826
  26%|██▌ | 222/852 [00:02<00:07, 80.29it/s]
827
+
828
  27%|██▋ | 231/852 [00:02<00:07, 81.65it/s]
829
+
830
  28%|██▊ | 240/852 [00:02<00:07, 80.86it/s]
831
+
832
  29%|██▉ | 249/852 [00:03<00:07, 79.93it/s]
833
+
834
  30%|███ | 258/852 [00:03<00:07, 81.98it/s]
835
+
836
  31%|███▏ | 267/852 [00:03<00:07, 81.16it/s]
837
+
838
  32%|███▏ | 276/852 [00:03<00:07, 81.53it/s]
839
+
840
  33%|███▎ | 285/852 [00:03<00:06, 82.14it/s]
841
+
842
  35%|███▍ | 294/852 [00:03<00:06, 81.42it/s]
843
+
844
  36%|███▌ | 303/852 [00:03<00:06, 82.36it/s]
845
+
846
  37%|███▋ | 312/852 [00:03<00:06, 80.14it/s]
847
+
848
  38%|███▊ | 321/852 [00:03<00:06, 81.45it/s]
849
+
850
  39%|███▊ | 330/852 [00:04<00:06, 80.34it/s]
851
+
852
  40%|███▉ | 339/852 [00:04<00:06, 80.51it/s]
853
+
854
  41%|████ | 348/852 [00:04<00:06, 81.62it/s]
855
+
856
  42%|████▏ | 357/852 [00:04<00:06, 79.87it/s]
857
+
858
  43%|████▎ | 366/852 [00:04<00:05, 81.03it/s]
859
+
860
  44%|████▍ | 375/852 [00:04<00:05, 81.89it/s]
861
+
862
  45%|████▌ | 384/852 [00:04<00:05, 81.28it/s]
863
+
864
  46%|████▌ | 393/852 [00:04<00:05, 82.86it/s]
865
+
866
  47%|████▋ | 402/852 [00:04<00:05, 82.37it/s]
867
+
868
  48%|████▊ | 411/852 [00:05<00:05, 80.21it/s]
869
+
870
  49%|████▉ | 420/852 [00:05<00:05, 81.32it/s]
871
+
872
  50%|█████ | 429/852 [00:05<00:05, 80.36it/s]
873
+
874
  51%|█████▏ | 438/852 [00:05<00:05, 81.67it/s]
875
+
876
  52%|█████▏ | 447/852 [00:05<00:04, 81.84it/s]
877
+
878
  54%|█████▎ | 456/852 [00:05<00:04, 82.77it/s]
879
+
880
  55%|█████▍ | 465/852 [00:05<00:04, 81.67it/s]
881
+
882
  56%|█████▌ | 474/852 [00:05<00:04, 76.72it/s]
883
+
884
  57%|█████▋ | 483/852 [00:06<00:04, 77.86it/s]
885
+
886
  58%|█████▊ | 492/852 [00:06<00:04, 78.76it/s]
887
+
888
  59%|█████▉ | 501/852 [00:06<00:04, 80.94it/s]
889
+
890
  60%|█████▉ | 510/852 [00:06<00:04, 80.66it/s]
891
+
892
  61%|██████ | 519/852 [00:06<00:04, 81.83it/s]
893
+
894
  62%|██████▏ | 528/852 [00:06<00:04, 79.71it/s]
895
+
896
  63%|██████▎ | 537/852 [00:06<00:03, 81.93it/s]
897
+
898
  64%|██████▍ | 546/852 [00:06<00:03, 82.54it/s]
899
+
900
  65%|██████▌ | 555/852 [00:06<00:03, 79.93it/s]
901
+
902
  66%|██████▌ | 564/852 [00:06<00:03, 80.45it/s]
903
+
904
  67%|██████▋ | 573/852 [00:07<00:03, 81.11it/s]
905
+
906
  68%|██████▊ | 582/852 [00:07<00:03, 81.14it/s]
907
+
908
  69%|██████▉ | 591/852 [00:07<00:03, 80.29it/s]
909
+
910
  70%|███████ | 600/852 [00:07<00:03, 80.37it/s]
911
+
912
  71%|███████▏ | 609/852 [00:07<00:03, 80.96it/s]
913
+
914
  73%|███████▎ | 618/852 [00:07<00:02, 79.39it/s]
915
+
916
  73%|███████▎ | 626/852 [00:07<00:02, 79.48it/s]
917
+
918
  74%|███████▍ | 634/852 [00:07<00:02, 79.56it/s]
919
+
920
  75%|███████▌ | 642/852 [00:07<00:02, 76.70it/s]
921
+
922
  76%|███████▋ | 651/852 [00:08<00:02, 78.86it/s]
923
+
924
  77%|███████▋ | 660/852 [00:08<00:02, 80.53it/s]
925
+
926
  79%|███████▊ | 669/852 [00:08<00:02, 80.93it/s]
927
+
928
  80%|███████▉ | 678/852 [00:08<00:02, 81.23it/s]
929
+
930
  81%|████████ | 687/852 [00:08<00:02, 81.90it/s]
931
+
932
  82%|████████▏ | 696/852 [00:08<00:01, 82.92it/s]
933
+
934
  83%|████████▎ | 705/852 [00:08<00:01, 84.10it/s]
935
+
936
  84%|████████▍ | 714/852 [00:08<00:01, 84.78it/s]
937
+
938
  85%|████████▍ | 723/852 [00:08<00:01, 83.35it/s]
939
+
940
  86%|████████▌ | 732/852 [00:09<00:01, 84.47it/s]
941
+
942
  87%|████████▋ | 741/852 [00:09<00:01, 84.18it/s]
943
+
944
  88%|████████▊ | 750/852 [00:09<00:01, 84.46it/s]
945
+
946
  89%|████████▉ | 759/852 [00:09<00:01, 85.22it/s]
947
+
948
  90%|█████████ | 768/852 [00:09<00:01, 83.60it/s]
949
+
950
  91%|█████████ | 777/852 [00:09<00:00, 84.05it/s]
951
+
952
  92%|█████████▏| 786/852 [00:09<00:00, 82.48it/s]
953
+
954
  93%|█████████▎| 795/852 [00:09<00:00, 83.63it/s]
955
+
956
  94%|█████████▍| 804/852 [00:09<00:00, 84.80it/s]
957
+
958
  95%|█████████▌| 813/852 [00:10<00:00, 83.62it/s]
959
+
960
  96%|█████████▋| 822/852 [00:10<00:00, 83.96it/s]
961
+
962
  98%|█████████▊| 831/852 [00:10<00:00, 84.33it/s]
963
+
964
  99%|█████████▊| 840/852 [00:10<00:00, 82.98it/s]
965
+
966
 
967
+
968
 
969
  10%|█ | 466/4660 [02:12<16:28, 4.24it/s]
970
+
971
+
972
  [INFO|trainer.py:3503] 2024-09-05 23:14:02,411 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-466
973
+ [INFO|configuration_utils.py:472] 2024-09-05 23:14:02,412 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-466/config.json
974
+ [INFO|modeling_utils.py:2799] 2024-09-05 23:14:03,437 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-466/model.safetensors
975
+ [INFO|tokenization_utils_base.py:2684] 2024-09-05 23:14:03,438 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-466/tokenizer_config.json
976
+ [INFO|tokenization_utils_base.py:2693] 2024-09-05 23:14:03,439 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-466/special_tokens_map.json
977
+ [INFO|tokenization_utils_base.py:2684] 2024-09-05 23:14:09,207 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
978
+ [INFO|tokenization_utils_base.py:2693] 2024-09-05 23:14:09,207 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
979
+
980
  10%|█ | 467/4660 [02:20<7:35:00, 6.51s/it]
981
  10%|█ | 468/4660 [02:20<5:22:02, 4.61s/it]
982
  10%|█ | 469/4660 [02:20<3:50:09, 3.29s/it]
983
  10%|█ | 470/4660 [02:20<2:45:14, 2.37s/it]
984
  10%|█ | 471/4660 [02:20<2:01:55, 1.75s/it]
985
  10%|█ | 472/4660 [02:21<1:30:03, 1.29s/it]
986
  10%|█ | 473/4660 [02:21<1:07:44, 1.03it/s]
987
  10%|█ | 474/4660 [02:21<52:40, 1.32it/s]
988
  10%|█ | 475/4660 [02:21<41:07, 1.70it/s]
989
  10%|█ | 476/4660 [02:22<33:13, 2.10it/s]
990
  10%|█ | 477/4660 [02:22<27:46, 2.51it/s]
991
  10%|█ | 478/4660 [02:22<23:22, 2.98it/s]
992
  10%|█ | 479/4660 [02:22<22:05, 3.15it/s]
993
  10%|█ | 480/4660 [02:23<20:19, 3.43it/s]
994
  10%|█ | 481/4660 [02:23<22:03, 3.16it/s]
995
  10%|█ | 482/4660 [02:23<19:59, 3.48it/s]
996
  10%|█ | 483/4660 [02:23<19:06, 3.64it/s]
997
  10%|█ | 484/4660 [02:24<17:17, 4.02it/s]
998
  10%|█ | 485/4660 [02:24<16:54, 4.11it/s]
999
  10%|█ | 486/4660 [02:24<16:30, 4.21it/s]
1000
  10%|█ | 487/4660 [02:24<15:46, 4.41it/s]
1001
  10%|█ | 488/4660 [02:25<18:07, 3.84it/s]
1002
  10%|█ | 489/4660 [02:25<18:19, 3.79it/s]
1003
  11%|█ | 490/4660 [02:25<18:28, 3.76it/s]
1004
  11%|█ | 491/4660 [02:25<16:46, 4.14it/s]
1005
  11%|█ | 492/4660 [02:25<16:33, 4.19it/s]
1006
  11%|█ | 493/4660 [02:26<18:09, 3.82it/s]
1007
  11%|█ | 494/4660 [02:26<17:24, 3.99it/s]
1008
  11%|█ | 495/4660 [02:26<18:01, 3.85it/s]
1009
  11%|█ | 496/4660 [02:27<16:58, 4.09it/s]
1010
  11%|█ | 497/4660 [02:27<21:16, 3.26it/s]
1011
  11%|█ | 498/4660 [02:27<19:03, 3.64it/s]
1012
  11%|█ | 499/4660 [02:27<17:54, 3.87it/s]
1013
  11%|█ | 500/4660 [02:28<17:15, 4.02it/s]
1014
 
1015
  11%|█ | 500/4660 [02:28<17:15, 4.02it/s]
1016
  11%|█ | 501/4660 [02:28<17:01, 4.07it/s]
1017
  11%|█ | 502/4660 [02:28<17:04, 4.06it/s]
1018
  11%|█ | 503/4660 [02:28<16:51, 4.11it/s]
1019
  11%|█ | 504/4660 [02:29<17:04, 4.06it/s]
1020
  11%|█ | 505/4660 [02:29<15:47, 4.39it/s]
1021
  11%|█ | 506/4660 [02:29<16:57, 4.08it/s]
1022
  11%|█ | 507/4660 [02:29<18:23, 3.76it/s]
1023
  11%|█ | 508/4660 [02:30<17:09, 4.03it/s]
1024
  11%|█ | 509/4660 [02:30<16:14, 4.26it/s]
1025
  11%|█ | 510/4660 [02:30<21:31, 3.21it/s]
1026
  11%|█ | 511/4660 [02:31<20:43, 3.34it/s]
1027
  11%|█ | 512/4660 [02:31<19:25, 3.56it/s]
1028
  11%|█ | 513/4660 [02:31<27:43, 2.49it/s]
1029
  11%|█ | 514/4660 [02:32<23:53, 2.89it/s]
1030
  11%|█ | 515/4660 [02:32<22:02, 3.13it/s]
1031
  11%|█ | 516/4660 [02:32<19:16, 3.58it/s]
1032
  11%|█ | 517/4660 [02:32<18:29, 3.73it/s]
1033
  11%|█ | 518/4660 [02:33<18:28, 3.74it/s]
1034
  11%|█ | 519/4660 [02:33<18:21, 3.76it/s]
1035
  11%|█ | 520/4660 [02:33<18:38, 3.70it/s]
1036
  11%|█ | 521/4660 [02:33<18:50, 3.66it/s]
1037
  11%|█ | 522/4660 [02:34<16:46, 4.11it/s]
1038
  11%|█ | 523/4660 [02:34<15:35, 4.42it/s]
1039
  11%|█ | 524/4660 [02:34<16:18, 4.23it/s]
1040
  11%|█▏ | 525/4660 [02:34<16:04, 4.29it/s]
1041
  11%|█▏ | 526/4660 [02:35<15:49, 4.35it/s]
1042
  11%|█▏ | 527/4660 [02:35<15:02, 4.58it/s]
1043
  11%|█▏ | 528/4660 [02:35<14:13, 4.84it/s]
1044
  11%|█▏ | 529/4660 [02:35<14:02, 4.90it/s]
1045
  11%|█▏ | 530/4660 [02:35<14:10, 4.86it/s]
1046
  11%|█▏ | 531/4660 [02:35<13:20, 5.16it/s]
1047
  11%|█▏ | 532/4660 [02:36<13:18, 5.17it/s]
1048
  11%|█▏ | 533/4660 [02:36<16:04, 4.28it/s]
1049
  11%|█▏ | 534/4660 [02:36<17:23, 3.95it/s]
1050
  11%|█▏ | 535/4660 [02:36<15:38, 4.40it/s]
1051
  12%|█▏ | 536/4660 [02:37<15:29, 4.44it/s]
1052
  12%|█▏ | 537/4660 [02:37<15:20, 4.48it/s]
1053
  12%|█▏ | 538/4660 [02:37<18:06, 3.79it/s]
1054
  12%|█▏ | 539/4660 [02:37<16:42, 4.11it/s]
1055
  12%|█▏ | 540/4660 [02:38<17:15, 3.98it/s]
1056
  12%|█▏ | 541/4660 [02:38<17:02, 4.03it/s]
1057
  12%|█▏ | 542/4660 [02:38<15:54, 4.32it/s]
1058
  12%|█▏ | 543/4660 [02:38<15:38, 4.39it/s]
1059
  12%|█▏ | 544/4660 [02:39<15:53, 4.32it/s]
1060
  12%|█▏ | 545/4660 [02:39<18:07, 3.78it/s]
1061
  12%|█▏ | 546/4660 [02:39<17:14, 3.98it/s]
1062
  12%|█▏ | 547/4660 [02:39<17:26, 3.93it/s]
1063
  12%|█▏ | 548/4660 [02:40<17:39, 3.88it/s]
1064
  12%|█▏ | 549/4660 [02:40<18:09, 3.77it/s]
1065
  12%|█▏ | 550/4660 [02:40<17:44, 3.86it/s]
1066
  12%|█▏ | 551/4660 [02:40<17:14, 3.97it/s]
1067
  12%|█▏ | 552/4660 [02:41<16:05, 4.25it/s]
1068
  12%|█▏ | 553/4660 [02:41<15:26, 4.43it/s]
1069
  12%|█▏ | 554/4660 [02:41<17:23, 3.94it/s]
1070
  12%|█▏ | 555/4660 [02:41<17:56, 3.81it/s]
1071
  12%|█▏ | 556/4660 [02:42<17:54, 3.82it/s]
1072
  12%|█▏ | 557/4660 [02:42<17:55, 3.81it/s]
1073
  12%|█▏ | 558/4660 [02:42<18:21, 3.72it/s]
1074
  12%|█▏ | 559/4660 [02:43<19:13, 3.55it/s]
1075
  12%|█▏ | 560/4660 [02:43<18:18, 3.73it/s]
1076
  12%|█▏ | 561/4660 [02:43<17:27, 3.91it/s]
1077
  12%|█▏ | 562/4660 [02:43<16:04, 4.25it/s]
1078
  12%|█▏ | 563/4660 [02:43<15:34, 4.38it/s]
1079
  12%|█▏ | 564/4660 [02:44<16:03, 4.25it/s]
1080
  12%|█▏ | 565/4660 [02:44<15:16, 4.47it/s]
1081
  12%|█▏ | 566/4660 [02:44<15:56, 4.28it/s]
1082
  12%|█▏ | 567/4660 [02:44<15:10, 4.50it/s]
1083
  12%|█▏ | 568/4660 [02:45<13:54, 4.90it/s]
1084
  12%|█▏ | 569/4660 [02:45<13:41, 4.98it/s]
1085
  12%|█▏ | 570/4660 [02:45<14:06, 4.83it/s]
1086
  12%|█▏ | 571/4660 [02:45<15:39, 4.35it/s]
1087
  12%|█▏ | 572/4660 [02:46<18:05, 3.77it/s]
1088
  12%|█▏ | 573/4660 [02:46<16:00, 4.25it/s]
1089
  12%|█▏ | 574/4660 [02:46<17:30, 3.89it/s]
1090
  12%|█▏ | 575/4660 [02:46<17:53, 3.80it/s]
1091
  12%|█▏ | 576/4660 [02:47<17:00, 4.00it/s]
1092
  12%|█▏ | 577/4660 [02:47<16:54, 4.03it/s]
1093
  12%|█▏ | 578/4660 [02:47<17:03, 3.99it/s]
1094
  12%|█▏ | 579/4660 [02:47<17:35, 3.87it/s]
1095
  12%|█▏ | 580/4660 [02:48<16:52, 4.03it/s]
1096
  12%|█▏ | 581/4660 [02:48<16:57, 4.01it/s]
1097
  12%|█▏ | 582/4660 [02:48<16:52, 4.03it/s]
1098
  13%|█▎ | 583/4660 [02:48<18:54, 3.59it/s]
1099
  13%|█▎ | 584/4660 [02:49<17:09, 3.96it/s]
1100
  13%|█▎ | 585/4660 [02:49<15:29, 4.39it/s]
1101
  13%|█▎ | 586/4660 [02:49<14:32, 4.67it/s]
1102
  13%|█▎ | 587/4660 [02:49<14:10, 4.79it/s]
1103
  13%|█▎ | 588/4660 [02:50<27:18, 2.48it/s]
1104
  13%|█▎ | 589/4660 [02:50<22:41, 2.99it/s]
1105
  13%|█▎ | 590/4660 [02:50<21:23, 3.17it/s]
1106
  13%|█▎ | 591/4660 [02:51<19:02, 3.56it/s]
1107
  13%|█▎ | 592/4660 [02:51<20:57, 3.23it/s]
1108
  13%|█▎ | 593/4660 [02:51<19:04, 3.55it/s]
1109
  13%|█▎ | 594/4660 [02:51<18:27, 3.67it/s]
1110
  13%|█▎ | 595/4660 [02:52<17:21, 3.90it/s]
1111
  13%|█▎ | 596/4660 [02:52<16:18, 4.16it/s]
1112
  13%|█▎ | 597/4660 [02:52<15:16, 4.43it/s]
1113
  13%|█▎ | 598/4660 [02:52<14:25, 4.70it/s]
1114
  13%|█▎ | 599/4660 [02:52<13:52, 4.88it/s]
1115
  13%|█▎ | 600/4660 [02:53<15:59, 4.23it/s]
1116
  13%|█▎ | 601/4660 [02:53<16:01, 4.22it/s]
1117
  13%|█▎ | 602/4660 [02:53<16:54, 4.00it/s]
1118
  13%|█▎ | 603/4660 [02:54<17:32, 3.86it/s]
1119
  13%|█▎ | 604/4660 [02:54<25:52, 2.61it/s]
1120
  13%|█▎ | 605/4660 [02:54<22:11, 3.04it/s]
1121
  13%|█▎ | 606/4660 [02:55<19:45, 3.42it/s]
1122
  13%|█▎ | 607/4660 [02:55<18:59, 3.56it/s]
1123
  13%|█▎ | 608/4660 [02:55<17:46, 3.80it/s]
1124
  13%|█▎ | 609/4660 [02:55<17:16, 3.91it/s]
1125
  13%|█▎ | 610/4660 [02:56<16:17, 4.15it/s]
1126
  13%|█▎ | 611/4660 [02:56<17:15, 3.91it/s]
1127
  13%|█▎ | 612/4660 [02:56<19:37, 3.44it/s]
1128
  13%|█▎ | 613/4660 [02:56<17:59, 3.75it/s]
1129
  13%|█▎ | 614/4660 [02:57<17:30, 3.85it/s]
1130
  13%|█▎ | 615/4660 [02:57<15:27, 4.36it/s]
1131
  13%|█▎ | 616/4660 [02:57<15:41, 4.29it/s]
1132
  13%|█▎ | 617/4660 [02:57<17:25, 3.87it/s]
1133
  13%|█▎ | 618/4660 [02:58<21:15, 3.17it/s]
1134
  13%|█▎ | 619/4660 [02:58<19:34, 3.44it/s]
1135
  13%|█▎ | 620/4660 [02:58<19:02, 3.54it/s]
1136
  13%|█▎ | 621/4660 [02:59<17:31, 3.84it/s]
1137
  13%|█▎ | 622/4660 [02:59<15:26, 4.36it/s]
1138
  13%|█▎ | 623/4660 [02:59<14:15, 4.72it/s]
1139
  13%|█▎ | 624/4660 [02:59<14:07, 4.76it/s]
1140
  13%|█▎ | 625/4660 [02:59<13:17, 5.06it/s]
1141
  13%|█▎ | 626/4660 [02:59<12:33, 5.35it/s]
1142
  13%|█▎ | 627/4660 [03:00<12:50, 5.24it/s]
1143
  13%|█▎ | 628/4660 [03:00<13:23, 5.02it/s]
1144
  13%|█▎ | 629/4660 [03:00<13:58, 4.81it/s]
1145
  14%|█▎ | 630/4660 [03:00<14:43, 4.56it/s]
1146
  14%|█▎ | 631/4660 [03:00<14:00, 4.79it/s]
1147
  14%|█▎ | 632/4660 [03:01<14:29, 4.63it/s]
1148
  14%|█▎ | 633/4660 [03:01<14:52, 4.51it/s]
1149
  14%|█▎ | 634/4660 [03:01<16:16, 4.12it/s]
1150
  14%|█▎ | 635/4660 [03:01<16:17, 4.12it/s]
1151
  14%|█▎ | 636/4660 [03:02<15:11, 4.42it/s]
1152
  14%|█▎ | 637/4660 [03:02<14:09, 4.74it/s]
1153
  14%|█▎ | 638/4660 [03:02<13:27, 4.98it/s]
1154
  14%|█▎ | 639/4660 [03:02<13:57, 4.80it/s]
1155
  14%|█▎ | 640/4660 [03:03<14:51, 4.51it/s]
1156
  14%|█▍ | 641/4660 [03:03<14:14, 4.70it/s]
1157
  14%|█▍ | 642/4660 [03:03<13:55, 4.81it/s]
1158
  14%|█▍ | 643/4660 [03:03<15:11, 4.40it/s]
1159
  14%|█▍ | 644/4660 [03:03<15:38, 4.28it/s]
1160
  14%|█▍ | 645/4660 [03:04<18:12, 3.68it/s]
1161
  14%|█▍ | 646/4660 [03:04<16:32, 4.04it/s]
1162
  14%|█▍ | 647/4660 [03:04<16:08, 4.14it/s]
1163
  14%|█▍ | 648/4660 [03:05<18:37, 3.59it/s]
1164
  14%|█▍ | 649/4660 [03:05<16:54, 3.95it/s]
1165
  14%|█▍ | 650/4660 [03:05<17:13, 3.88it/s]
1166
  14%|█▍ | 651/4660 [03:05<17:43, 3.77it/s]
1167
  14%|█▍ | 652/4660 [03:05<16:06, 4.15it/s]
1168
  14%|█▍ | 653/4660 [03:06<15:29, 4.31it/s]
1169
  14%|█▍ | 654/4660 [03:06<15:24, 4.33it/s]
1170
  14%|█▍ | 655/4660 [03:06<16:11, 4.12it/s]
1171
  14%|█▍ | 656/4660 [03:06<15:04, 4.43it/s]
1172
  14%|█▍ | 657/4660 [03:07<14:10, 4.71it/s]
1173
  14%|█▍ | 658/4660 [03:07<14:31, 4.59it/s]
1174
  14%|█▍ | 659/4660 [03:07<14:03, 4.74it/s]
1175
  14%|█▍ | 660/4660 [03:07<15:13, 4.38it/s]
1176
  14%|█▍ | 661/4660 [03:07<15:25, 4.32it/s]
1177
  14%|█▍ | 662/4660 [03:08<14:18, 4.66it/s]
1178
  14%|█▍ | 663/4660 [03:08<14:18, 4.66it/s]
1179
  14%|█▍ | 664/4660 [03:08<15:55, 4.18it/s]
1180
  14%|█▍ | 665/4660 [03:08<15:01, 4.43it/s]
1181
  14%|█▍ | 666/4660 [03:09<14:22, 4.63it/s]
1182
  14%|█▍ | 667/4660 [03:09<14:20, 4.64it/s]
1183
  14%|█▍ | 668/4660 [03:09<15:44, 4.22it/s]
1184
  14%|█▍ | 669/4660 [03:09<14:41, 4.53it/s]
1185
  14%|█▍ | 670/4660 [03:09<14:17, 4.65it/s]
1186
  14%|█▍ | 671/4660 [03:10<20:51, 3.19it/s]
1187
  14%|█▍ | 672/4660 [03:10<19:12, 3.46it/s]
1188
  14%|█▍ | 673/4660 [03:10<18:07, 3.67it/s]
1189
  14%|█▍ | 674/4660 [03:11<16:17, 4.08it/s]
1190
  14%|█▍ | 675/4660 [03:11<15:16, 4.35it/s]
1191
  15%|█▍ | 676/4660 [03:11<15:56, 4.17it/s]
1192
  15%|█▍ | 677/4660 [03:11<15:43, 4.22it/s]
1193
  15%|█▍ | 678/4660 [03:11<14:08, 4.69it/s]
1194
  15%|█▍ | 679/4660 [03:12<13:59, 4.74it/s]
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.98998998998999,
3
+ "total_flos": 1.5071241212671032e+16,
4
+ "train_loss": 0.022475468706272407,
5
+ "train_runtime": 1385.1143,
6
+ "train_samples": 31947,
7
+ "train_samples_per_second": 230.645,
8
+ "train_steps_per_second": 3.603
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8040201005025126,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-3996",
4
+ "epoch": 9.98998998998999,
5
+ "eval_steps": 500,
6
+ "global_step": 4990,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.998998998998999,
13
+ "eval_accuracy": 0.9730869045820918,
14
+ "eval_f1": 0.75963794837412,
15
+ "eval_loss": 0.07385822385549545,
16
+ "eval_precision": 0.7270588235294118,
17
+ "eval_recall": 0.7952737482452036,
18
+ "eval_runtime": 14.2023,
19
+ "eval_samples_per_second": 479.501,
20
+ "eval_steps_per_second": 59.99,
21
+ "step": 499
22
+ },
23
+ {
24
+ "epoch": 1.001001001001001,
25
+ "grad_norm": 0.8427119851112366,
26
+ "learning_rate": 4.4989979959919844e-05,
27
+ "loss": 0.105,
28
+ "step": 500
29
+ },
30
+ {
31
+ "epoch": 2.0,
32
+ "eval_accuracy": 0.972949592870776,
33
+ "eval_f1": 0.7655806561471223,
34
+ "eval_loss": 0.09075114130973816,
35
+ "eval_precision": 0.7435501653803749,
36
+ "eval_recall": 0.7889564810481984,
37
+ "eval_runtime": 14.1492,
38
+ "eval_samples_per_second": 481.299,
39
+ "eval_steps_per_second": 60.215,
40
+ "step": 999
41
+ },
42
+ {
43
+ "epoch": 2.002002002002002,
44
+ "grad_norm": 0.9121108651161194,
45
+ "learning_rate": 3.997995991983968e-05,
46
+ "loss": 0.0448,
47
+ "step": 1000
48
+ },
49
+ {
50
+ "epoch": 2.998998998998999,
51
+ "eval_accuracy": 0.9743913658395924,
52
+ "eval_f1": 0.7829875042989798,
53
+ "eval_loss": 0.09297410398721695,
54
+ "eval_precision": 0.7675882220723759,
55
+ "eval_recall": 0.7990173139915769,
56
+ "eval_runtime": 14.1376,
57
+ "eval_samples_per_second": 481.693,
58
+ "eval_steps_per_second": 60.265,
59
+ "step": 1498
60
+ },
61
+ {
62
+ "epoch": 3.003003003003003,
63
+ "grad_norm": 0.5380845069885254,
64
+ "learning_rate": 3.496993987975952e-05,
65
+ "loss": 0.0255,
66
+ "step": 1500
67
+ },
68
+ {
69
+ "epoch": 4.0,
70
+ "eval_accuracy": 0.9757438861960537,
71
+ "eval_f1": 0.789358010410642,
72
+ "eval_loss": 0.10520397126674652,
73
+ "eval_precision": 0.7805994051704416,
74
+ "eval_recall": 0.798315395414132,
75
+ "eval_runtime": 14.3621,
76
+ "eval_samples_per_second": 474.163,
77
+ "eval_steps_per_second": 59.323,
78
+ "step": 1998
79
+ },
80
+ {
81
+ "epoch": 4.004004004004004,
82
+ "grad_norm": 0.2705754339694977,
83
+ "learning_rate": 2.9959919839679363e-05,
84
+ "loss": 0.0164,
85
+ "step": 2000
86
+ },
87
+ {
88
+ "epoch": 4.998998998998999,
89
+ "eval_accuracy": 0.9750435964683428,
90
+ "eval_f1": 0.7879346074142298,
91
+ "eval_loss": 0.10997848957777023,
92
+ "eval_precision": 0.7756119673617408,
93
+ "eval_recall": 0.8006551240056153,
94
+ "eval_runtime": 14.2341,
95
+ "eval_samples_per_second": 478.428,
96
+ "eval_steps_per_second": 59.856,
97
+ "step": 2497
98
+ },
99
+ {
100
+ "epoch": 5.005005005005005,
101
+ "grad_norm": 0.27666428685188293,
102
+ "learning_rate": 2.49498997995992e-05,
103
+ "loss": 0.0112,
104
+ "step": 2500
105
+ },
106
+ {
107
+ "epoch": 6.0,
108
+ "eval_accuracy": 0.9768011863731858,
109
+ "eval_f1": 0.799447386599125,
110
+ "eval_loss": 0.12663568556308746,
111
+ "eval_precision": 0.7869446962828649,
112
+ "eval_recall": 0.8123537669630323,
113
+ "eval_runtime": 14.5018,
114
+ "eval_samples_per_second": 469.597,
115
+ "eval_steps_per_second": 58.751,
116
+ "step": 2997
117
+ },
118
+ {
119
+ "epoch": 6.006006006006006,
120
+ "grad_norm": 0.24552026391029358,
121
+ "learning_rate": 1.993987975951904e-05,
122
+ "loss": 0.0073,
123
+ "step": 3000
124
+ },
125
+ {
126
+ "epoch": 6.998998998998999,
127
+ "eval_accuracy": 0.976293133041317,
128
+ "eval_f1": 0.7968804562914678,
129
+ "eval_loss": 0.12882493436336517,
130
+ "eval_precision": 0.792911744266852,
131
+ "eval_recall": 0.8008890968647637,
132
+ "eval_runtime": 14.3476,
133
+ "eval_samples_per_second": 474.643,
134
+ "eval_steps_per_second": 59.383,
135
+ "step": 3496
136
+ },
137
+ {
138
+ "epoch": 7.007007007007007,
139
+ "grad_norm": 0.2008085697889328,
140
+ "learning_rate": 1.492985971943888e-05,
141
+ "loss": 0.0054,
142
+ "step": 3500
143
+ },
144
+ {
145
+ "epoch": 8.0,
146
+ "eval_accuracy": 0.9764853694371592,
147
+ "eval_f1": 0.8040201005025126,
148
+ "eval_loss": 0.14244574308395386,
149
+ "eval_precision": 0.803175344384777,
150
+ "eval_recall": 0.8048666354702855,
151
+ "eval_runtime": 14.514,
152
+ "eval_samples_per_second": 469.202,
153
+ "eval_steps_per_second": 58.702,
154
+ "step": 3996
155
+ },
156
+ {
157
+ "epoch": 8.008008008008009,
158
+ "grad_norm": 0.12597906589508057,
159
+ "learning_rate": 9.919839679358718e-06,
160
+ "loss": 0.0038,
161
+ "step": 4000
162
+ },
163
+ {
164
+ "epoch": 8.998998998999,
165
+ "eval_accuracy": 0.9765059661938567,
166
+ "eval_f1": 0.7970779220779219,
167
+ "eval_loss": 0.14552859961986542,
168
+ "eval_precision": 0.7901149425287356,
169
+ "eval_recall": 0.8041647168928404,
170
+ "eval_runtime": 14.2396,
171
+ "eval_samples_per_second": 478.242,
172
+ "eval_steps_per_second": 59.833,
173
+ "step": 4495
174
+ },
175
+ {
176
+ "epoch": 9.00900900900901,
177
+ "grad_norm": 0.2577208876609802,
178
+ "learning_rate": 4.9098196392785576e-06,
179
+ "loss": 0.0028,
180
+ "step": 4500
181
+ },
182
+ {
183
+ "epoch": 9.98998998998999,
184
+ "eval_accuracy": 0.9768286487154489,
185
+ "eval_f1": 0.7984262902105993,
186
+ "eval_loss": 0.14972682297229767,
187
+ "eval_precision": 0.7898351648351648,
188
+ "eval_recall": 0.8072063640617688,
189
+ "eval_runtime": 14.3927,
190
+ "eval_samples_per_second": 473.158,
191
+ "eval_steps_per_second": 59.197,
192
+ "step": 4990
193
+ },
194
+ {
195
+ "epoch": 9.98998998998999,
196
+ "step": 4990,
197
+ "total_flos": 1.5071241212671032e+16,
198
+ "train_loss": 0.022475468706272407,
199
+ "train_runtime": 1385.1143,
200
+ "train_samples_per_second": 230.645,
201
+ "train_steps_per_second": 3.603
202
+ }
203
+ ],
204
+ "logging_steps": 500,
205
+ "max_steps": 4990,
206
+ "num_input_tokens_seen": 0,
207
+ "num_train_epochs": 10,
208
+ "save_steps": 500,
209
+ "stateful_callbacks": {
210
+ "TrainerControl": {
211
+ "args": {
212
+ "should_epoch_stop": false,
213
+ "should_evaluate": false,
214
+ "should_log": false,
215
+ "should_save": true,
216
+ "should_training_stop": true
217
+ },
218
+ "attributes": {}
219
+ }
220
+ },
221
+ "total_flos": 1.5071241212671032e+16,
222
+ "train_batch_size": 32,
223
+ "trial_name": null,
224
+ "trial_params": null
225
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff