File size: 186,468 Bytes
08d4796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddac389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35cc81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99e540d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16af01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18b86ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7fa04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0932943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29c634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10f1a7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc41cb8
 
 
 
 
 
 
 
 
 
 
 
 
4ee5e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
2024-09-09 12:14:35.494661: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-09-09 12:14:35.513016: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-09-09 12:14:35.535014: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-09-09 12:14:35.541769: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-09-09 12:14:35.557993: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-09-09 12:14:36.793402: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of πŸ€— Transformers. Use `eval_strategy` instead
  warnings.warn(
09/09/2024 12:14:38 - WARNING - __main__ -   Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
09/09/2024 12:14:38 - INFO - __main__ -   Training/evaluation parameters TrainingArguments(
_n_gpu=1,
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
batch_eval_metrics=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
dataloader_prefetch_factor=None,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=True,
do_predict=True,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_do_concat_batches=True,
eval_on_start=False,
eval_steps=None,
eval_strategy=epoch,
eval_use_gather_object=False,
evaluation_strategy=epoch,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=2,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=True,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=True,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/content/dissertation/scripts/ner/output/tb,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=f1,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=10.0,
optim=adamw_torch,
optim_args=None,
optim_target_modules=None,
output_dir=/content/dissertation/scripts/ner/output,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=32,
prediction_loss_only=False,
push_to_hub=True,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
restore_callback_states_from_checkpoint=False,
resume_from_checkpoint=None,
run_name=/content/dissertation/scripts/ner/output,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=epoch,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
split_batches=None,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torch_empty_cache_steps=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)

Downloading builder script:   0%|          | 0.00/3.92k [00:00<?, ?B/s]
Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3.92k/3.92k [00:00<00:00, 16.0kB/s]
Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3.92k/3.92k [00:00<00:00, 16.0kB/s]

Downloading data:   0%|          | 0.00/13.7M [00:00<?, ?B/s]
Downloading data:  77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 10.5M/13.7M [00:00<00:00, 10.6MB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 13.7M/13.7M [00:01<00:00, 11.9MB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 13.7M/13.7M [00:01<00:00, 11.6MB/s]

Downloading data:   0%|          | 0.00/2.93M [00:00<?, ?B/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2.93M/2.93M [00:00<00:00, 4.24MB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2.93M/2.93M [00:00<00:00, 4.22MB/s]

Downloading data:   0%|          | 0.00/4.78M [00:00<?, ?B/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4.78M/4.78M [00:00<00:00, 5.09MB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4.78M/4.78M [00:00<00:00, 5.06MB/s]

Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 560 examples [00:00, 5579.69 examples/s]
Generating train split: 1362 examples [00:00, 5414.73 examples/s]
Generating train split: 1937 examples [00:00, 5541.43 examples/s]
Generating train split: 2738 examples [00:00, 5446.93 examples/s]
Generating train split: 3592 examples [00:00, 5464.58 examples/s]
Generating train split: 4404 examples [00:00, 5442.51 examples/s]
Generating train split: 4974 examples [00:00, 5505.21 examples/s]
Generating train split: 5832 examples [00:01, 5579.00 examples/s]
Generating train split: 6663 examples [00:01, 5563.41 examples/s]
Generating train split: 7496 examples [00:01, 5556.89 examples/s]
Generating train split: 8300 examples [00:01, 5487.46 examples/s]
Generating train split: 8913 examples [00:01, 5633.76 examples/s]
Generating train split: 9706 examples [00:01, 5515.35 examples/s]
Generating train split: 10294 examples [00:01, 5512.88 examples/s]
Generating train split: 10885 examples [00:01, 5612.39 examples/s]
Generating train split: 10936 examples [00:01, 5509.85 examples/s]

Generating validation split: 0 examples [00:00, ? examples/s]
Generating validation split: 652 examples [00:00, 6495.55 examples/s]
Generating validation split: 1504 examples [00:00, 5932.88 examples/s]
Generating validation split: 2343 examples [00:00, 5760.31 examples/s]
Generating validation split: 2519 examples [00:00, 5753.19 examples/s]

Generating test split: 0 examples [00:00, ? examples/s]
Generating test split: 635 examples [00:00, 6320.94 examples/s]
Generating test split: 1483 examples [00:00, 5864.12 examples/s]
Generating test split: 2322 examples [00:00, 5720.53 examples/s]
Generating test split: 2953 examples [00:00, 5902.47 examples/s]
Generating test split: 3809 examples [00:00, 5809.22 examples/s]
Generating test split: 4047 examples [00:00, 5752.07 examples/s]
[INFO|configuration_utils.py:733] 2024-09-09 12:14:50,533 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-09-09 12:14:50,537 >> Model config RobertaConfig {
  "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "finetuning_task": "ner",
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "id2label": {
    "0": "O",
    "1": "B-SINTOMA",
    "2": "I-SINTOMA"
  },
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "label2id": {
    "B-SINTOMA": 1,
    "I-SINTOMA": 2,
    "O": 0
  },
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.44.2",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50262
}

[INFO|configuration_utils.py:733] 2024-09-09 12:14:50,787 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-09-09 12:14:50,788 >> Model config RobertaConfig {
  "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.44.2",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50262
}

[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,800 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/vocab.json
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/merges.txt
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file tokenizer.json from cache at None
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file added_tokens.json from cache at None
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/special_tokens_map.json
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/tokenizer_config.json
[INFO|configuration_utils.py:733] 2024-09-09 12:14:50,801 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-09-09 12:14:50,802 >> Model config RobertaConfig {
  "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.44.2",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50262
}

/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
  warnings.warn(
[INFO|configuration_utils.py:733] 2024-09-09 12:14:50,882 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-09-09 12:14:50,883 >> Model config RobertaConfig {
  "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.44.2",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50262
}

[INFO|modeling_utils.py:3678] 2024-09-09 12:14:51,213 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/pytorch_model.bin
[INFO|modeling_utils.py:4497] 2024-09-09 12:14:51,293 >> Some weights of the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es were not used when initializing RobertaForTokenClassification: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.decoder.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']
- This IS expected if you are initializing RobertaForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
[WARNING|modeling_utils.py:4509] 2024-09-09 12:14:51,293 >> Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

Map:   0%|          | 0/10936 [00:00<?, ? examples/s]
Map:   9%|β–‰         | 1000/10936 [00:00<00:03, 3028.63 examples/s]
Map:  18%|β–ˆβ–Š        | 2000/10936 [00:00<00:01, 5033.04 examples/s]
Map:  27%|β–ˆβ–ˆβ–‹       | 3000/10936 [00:00<00:01, 6438.12 examples/s]
Map:  37%|β–ˆβ–ˆβ–ˆβ–‹      | 4000/10936 [00:00<00:00, 7461.99 examples/s]
Map:  46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 5000/10936 [00:00<00:00, 8144.27 examples/s]
Map:  64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 7000/10936 [00:00<00:00, 9096.05 examples/s]
Map:  73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 8000/10936 [00:01<00:00, 9263.87 examples/s]
Map:  91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 10000/10936 [00:01<00:00, 9598.21 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 10936/10936 [00:01<00:00, 8157.31 examples/s]

Map:   0%|          | 0/2519 [00:00<?, ? examples/s]
Map:  79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 2000/2519 [00:00<00:00, 10345.28 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2519/2519 [00:00<00:00, 10154.28 examples/s]

Map:   0%|          | 0/4047 [00:00<?, ? examples/s]
Map:  49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 2000/4047 [00:00<00:00, 10228.61 examples/s]
Map:  99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 4000/4047 [00:00<00:00, 10327.08 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4047/4047 [00:00<00:00, 10160.37 examples/s]
/content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library πŸ€— Evaluate: https://huggingface.co/docs/evaluate
  metric = load_metric("seqeval", trust_remote_code=True)
[INFO|trainer.py:811] 2024-09-09 12:14:55,082 >> The following columns in the training set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:2134] 2024-09-09 12:14:55,636 >> ***** Running training *****
[INFO|trainer.py:2135] 2024-09-09 12:14:55,636 >>   Num examples = 10,936
[INFO|trainer.py:2136] 2024-09-09 12:14:55,636 >>   Num Epochs = 10
[INFO|trainer.py:2137] 2024-09-09 12:14:55,636 >>   Instantaneous batch size per device = 32
[INFO|trainer.py:2140] 2024-09-09 12:14:55,636 >>   Total train batch size (w. parallel, distributed & accumulation) = 64
[INFO|trainer.py:2141] 2024-09-09 12:14:55,636 >>   Gradient Accumulation steps = 2
[INFO|trainer.py:2142] 2024-09-09 12:14:55,636 >>   Total optimization steps = 1,710
[INFO|trainer.py:2143] 2024-09-09 12:14:55,637 >>   Number of trainable parameters = 124,055,043

  0%|          | 0/1710 [00:00<?, ?it/s]
  0%|          | 1/1710 [00:01<32:09,  1.13s/it]
  0%|          | 2/1710 [00:01<19:10,  1.48it/s]
  0%|          | 3/1710 [00:01<16:10,  1.76it/s]
  0%|          | 4/1710 [00:02<14:04,  2.02it/s]
  0%|          | 5/1710 [00:02<13:32,  2.10it/s]
  0%|          | 6/1710 [00:03<14:07,  2.01it/s]
  0%|          | 7/1710 [00:03<12:53,  2.20it/s]
  0%|          | 8/1710 [00:04<12:12,  2.32it/s]
  1%|          | 9/1710 [00:04<12:30,  2.27it/s]
  1%|          | 10/1710 [00:04<11:41,  2.42it/s]
  1%|          | 11/1710 [00:05<12:06,  2.34it/s]
  1%|          | 12/1710 [00:05<13:56,  2.03it/s]
  1%|          | 13/1710 [00:06<14:13,  1.99it/s]
  1%|          | 14/1710 [00:06<14:10,  2.00it/s]
  1%|          | 15/1710 [00:07<14:07,  2.00it/s]
  1%|          | 16/1710 [00:08<15:00,  1.88it/s]
  1%|          | 17/1710 [00:08<13:46,  2.05it/s]
  1%|          | 18/1710 [00:08<13:39,  2.06it/s]
  1%|          | 19/1710 [00:09<12:48,  2.20it/s]
  1%|          | 20/1710 [00:09<12:31,  2.25it/s]
  1%|          | 21/1710 [00:10<12:28,  2.26it/s]
  1%|▏         | 22/1710 [00:10<14:21,  1.96it/s]
  1%|▏         | 23/1710 [00:11<14:32,  1.93it/s]
  1%|▏         | 24/1710 [00:11<13:26,  2.09it/s]
  1%|▏         | 25/1710 [00:12<14:27,  1.94it/s]
  2%|▏         | 26/1710 [00:12<13:07,  2.14it/s]
  2%|▏         | 27/1710 [00:13<14:22,  1.95it/s]
  2%|▏         | 28/1710 [00:13<13:51,  2.02it/s]
  2%|▏         | 29/1710 [00:14<14:49,  1.89it/s]
  2%|▏         | 30/1710 [00:14<13:40,  2.05it/s]
  2%|▏         | 31/1710 [00:15<13:01,  2.15it/s]
  2%|▏         | 32/1710 [00:15<14:15,  1.96it/s]
  2%|▏         | 33/1710 [00:16<18:22,  1.52it/s]
  2%|▏         | 34/1710 [00:17<18:55,  1.48it/s]
  2%|▏         | 35/1710 [00:17<16:24,  1.70it/s]
  2%|▏         | 36/1710 [00:18<14:21,  1.94it/s]
  2%|▏         | 37/1710 [00:19<17:15,  1.62it/s]
  2%|▏         | 38/1710 [00:19<15:50,  1.76it/s]
  2%|▏         | 39/1710 [00:19<14:13,  1.96it/s]
  2%|▏         | 40/1710 [00:20<14:20,  1.94it/s]
  2%|▏         | 41/1710 [00:20<13:25,  2.07it/s]
  2%|▏         | 42/1710 [00:21<14:16,  1.95it/s]
  3%|β–Ž         | 43/1710 [00:21<14:07,  1.97it/s]
  3%|β–Ž         | 44/1710 [00:22<13:33,  2.05it/s]
  3%|β–Ž         | 45/1710 [00:22<12:56,  2.14it/s]
  3%|β–Ž         | 46/1710 [00:23<12:49,  2.16it/s]
  3%|β–Ž         | 47/1710 [00:23<12:51,  2.16it/s]
  3%|β–Ž         | 48/1710 [00:24<12:06,  2.29it/s]
  3%|β–Ž         | 49/1710 [00:24<15:02,  1.84it/s]
  3%|β–Ž         | 50/1710 [00:25<14:06,  1.96it/s]
  3%|β–Ž         | 51/1710 [00:25<13:11,  2.10it/s]
  3%|β–Ž         | 52/1710 [00:26<12:45,  2.17it/s]
  3%|β–Ž         | 53/1710 [00:26<12:22,  2.23it/s]
  3%|β–Ž         | 54/1710 [00:27<12:33,  2.20it/s]
  3%|β–Ž         | 55/1710 [00:27<15:05,  1.83it/s]
  3%|β–Ž         | 56/1710 [00:28<13:50,  1.99it/s]
  3%|β–Ž         | 57/1710 [00:28<13:48,  2.00it/s]
  3%|β–Ž         | 58/1710 [00:29<12:17,  2.24it/s]
  3%|β–Ž         | 59/1710 [00:29<11:30,  2.39it/s]
  4%|β–Ž         | 60/1710 [00:29<11:26,  2.40it/s]
  4%|β–Ž         | 61/1710 [00:30<12:02,  2.28it/s]
  4%|β–Ž         | 62/1710 [00:31<14:35,  1.88it/s]
  4%|β–Ž         | 63/1710 [00:31<13:25,  2.05it/s]
  4%|β–Ž         | 64/1710 [00:31<12:02,  2.28it/s]
  4%|▍         | 65/1710 [00:32<12:17,  2.23it/s]
  4%|▍         | 66/1710 [00:32<11:20,  2.42it/s]
  4%|▍         | 67/1710 [00:33<12:26,  2.20it/s]
  4%|▍         | 68/1710 [00:33<12:17,  2.23it/s]
  4%|▍         | 69/1710 [00:33<12:09,  2.25it/s]
  4%|▍         | 70/1710 [00:34<12:14,  2.23it/s]
  4%|▍         | 71/1710 [00:34<11:59,  2.28it/s]
  4%|▍         | 72/1710 [00:35<12:12,  2.24it/s]
  4%|▍         | 73/1710 [00:35<11:23,  2.40it/s]
  4%|▍         | 74/1710 [00:36<11:55,  2.29it/s]
  4%|▍         | 75/1710 [00:36<11:33,  2.36it/s]
  4%|▍         | 76/1710 [00:37<13:03,  2.09it/s]
  5%|▍         | 77/1710 [00:37<13:12,  2.06it/s]
  5%|▍         | 78/1710 [00:38<14:10,  1.92it/s]
  5%|▍         | 79/1710 [00:38<14:31,  1.87it/s]
  5%|▍         | 80/1710 [00:39<13:57,  1.95it/s]
  5%|▍         | 81/1710 [00:39<13:52,  1.96it/s]
  5%|▍         | 82/1710 [00:40<12:48,  2.12it/s]
  5%|▍         | 83/1710 [00:40<14:18,  1.90it/s]
  5%|▍         | 84/1710 [00:41<13:36,  1.99it/s]
  5%|▍         | 85/1710 [00:41<12:53,  2.10it/s]
  5%|β–Œ         | 86/1710 [00:42<12:27,  2.17it/s]
  5%|β–Œ         | 87/1710 [00:42<12:30,  2.16it/s]
  5%|β–Œ         | 88/1710 [00:43<12:09,  2.22it/s]
  5%|β–Œ         | 89/1710 [00:43<12:54,  2.09it/s]
  5%|β–Œ         | 90/1710 [00:43<12:16,  2.20it/s]
  5%|β–Œ         | 91/1710 [00:44<12:47,  2.11it/s]
  5%|β–Œ         | 92/1710 [00:44<12:29,  2.16it/s]
  5%|β–Œ         | 93/1710 [00:45<12:22,  2.18it/s]
  5%|β–Œ         | 94/1710 [00:45<12:03,  2.23it/s]
  6%|β–Œ         | 95/1710 [00:46<12:00,  2.24it/s]
  6%|β–Œ         | 96/1710 [00:46<13:09,  2.05it/s]
  6%|β–Œ         | 97/1710 [00:47<12:05,  2.22it/s]
  6%|β–Œ         | 98/1710 [00:47<11:19,  2.37it/s]
  6%|β–Œ         | 99/1710 [00:47<10:59,  2.44it/s]
  6%|β–Œ         | 100/1710 [00:48<11:51,  2.26it/s]
  6%|β–Œ         | 101/1710 [00:48<11:43,  2.29it/s]
  6%|β–Œ         | 102/1710 [00:49<11:46,  2.28it/s]
  6%|β–Œ         | 103/1710 [00:49<11:30,  2.33it/s]
  6%|β–Œ         | 104/1710 [00:50<12:02,  2.22it/s]
  6%|β–Œ         | 105/1710 [00:50<11:09,  2.40it/s]
  6%|β–Œ         | 106/1710 [00:50<11:00,  2.43it/s]
  6%|β–‹         | 107/1710 [00:51<11:12,  2.38it/s]
  6%|β–‹         | 108/1710 [00:51<10:58,  2.43it/s]
  6%|β–‹         | 109/1710 [00:52<10:58,  2.43it/s]
  6%|β–‹         | 110/1710 [00:52<11:53,  2.24it/s]
  6%|β–‹         | 111/1710 [00:53<11:47,  2.26it/s]
  7%|β–‹         | 112/1710 [00:53<11:39,  2.29it/s]
  7%|β–‹         | 113/1710 [00:53<11:16,  2.36it/s]
  7%|β–‹         | 114/1710 [00:54<11:12,  2.37it/s]
  7%|β–‹         | 115/1710 [00:54<10:35,  2.51it/s]
  7%|β–‹         | 116/1710 [00:55<11:13,  2.37it/s]
  7%|β–‹         | 117/1710 [00:55<11:17,  2.35it/s]
  7%|β–‹         | 118/1710 [00:56<14:58,  1.77it/s]
  7%|β–‹         | 119/1710 [00:56<14:07,  1.88it/s]
  7%|β–‹         | 120/1710 [00:57<13:45,  1.93it/s]
  7%|β–‹         | 121/1710 [00:57<12:26,  2.13it/s]
  7%|β–‹         | 122/1710 [00:58<11:56,  2.22it/s]
  7%|β–‹         | 123/1710 [00:58<11:05,  2.39it/s]
  7%|β–‹         | 124/1710 [00:58<10:58,  2.41it/s]
  7%|β–‹         | 125/1710 [00:59<10:03,  2.63it/s]
  7%|β–‹         | 126/1710 [00:59<10:30,  2.51it/s]
  7%|β–‹         | 127/1710 [01:00<10:41,  2.47it/s]
  7%|β–‹         | 128/1710 [01:00<10:48,  2.44it/s]
  8%|β–Š         | 129/1710 [01:00<10:51,  2.42it/s]
  8%|β–Š         | 130/1710 [01:01<11:48,  2.23it/s]
  8%|β–Š         | 131/1710 [01:01<11:11,  2.35it/s]
  8%|β–Š         | 132/1710 [01:02<11:31,  2.28it/s]
  8%|β–Š         | 133/1710 [01:02<11:40,  2.25it/s]
  8%|β–Š         | 134/1710 [01:03<10:50,  2.42it/s]
  8%|β–Š         | 135/1710 [01:03<10:17,  2.55it/s]
  8%|β–Š         | 136/1710 [01:03<10:39,  2.46it/s]
  8%|β–Š         | 137/1710 [01:04<11:22,  2.30it/s]
  8%|β–Š         | 138/1710 [01:04<11:21,  2.31it/s]
  8%|β–Š         | 139/1710 [01:05<11:55,  2.20it/s]
  8%|β–Š         | 140/1710 [01:06<14:01,  1.87it/s]
  8%|β–Š         | 141/1710 [01:06<12:55,  2.02it/s]
  8%|β–Š         | 142/1710 [01:07<13:39,  1.91it/s]
  8%|β–Š         | 143/1710 [01:07<12:42,  2.06it/s]
  8%|β–Š         | 144/1710 [01:07<11:24,  2.29it/s]
  8%|β–Š         | 145/1710 [01:08<11:51,  2.20it/s]
  9%|β–Š         | 146/1710 [01:08<12:38,  2.06it/s]
  9%|β–Š         | 147/1710 [01:09<12:53,  2.02it/s]
  9%|β–Š         | 148/1710 [01:09<11:37,  2.24it/s]
  9%|β–Š         | 149/1710 [01:10<13:00,  2.00it/s]
  9%|β–‰         | 150/1710 [01:10<13:03,  1.99it/s]
  9%|β–‰         | 151/1710 [01:11<12:32,  2.07it/s]
  9%|β–‰         | 152/1710 [01:11<12:23,  2.10it/s]
  9%|β–‰         | 153/1710 [01:12<11:41,  2.22it/s]
  9%|β–‰         | 154/1710 [01:12<11:02,  2.35it/s]
  9%|β–‰         | 155/1710 [01:12<10:28,  2.48it/s]
  9%|β–‰         | 156/1710 [01:13<11:00,  2.35it/s]
  9%|β–‰         | 157/1710 [01:13<10:35,  2.44it/s]
  9%|β–‰         | 158/1710 [01:14<10:03,  2.57it/s]
  9%|β–‰         | 159/1710 [01:14<10:55,  2.37it/s]
  9%|β–‰         | 160/1710 [01:14<11:03,  2.34it/s]
  9%|β–‰         | 161/1710 [01:15<10:27,  2.47it/s]
  9%|β–‰         | 162/1710 [01:15<10:53,  2.37it/s]
 10%|β–‰         | 163/1710 [01:16<11:08,  2.31it/s]
 10%|β–‰         | 164/1710 [01:16<10:45,  2.39it/s]
 10%|β–‰         | 165/1710 [01:17<11:08,  2.31it/s]
 10%|β–‰         | 166/1710 [01:17<12:47,  2.01it/s]
 10%|β–‰         | 167/1710 [01:18<11:48,  2.18it/s]
 10%|β–‰         | 168/1710 [01:18<11:28,  2.24it/s]
 10%|β–‰         | 169/1710 [01:19<12:21,  2.08it/s]
 10%|β–‰         | 170/1710 [01:19<11:20,  2.26it/s]
 10%|β–ˆ         | 171/1710 [01:19<11:08,  2.30it/s][INFO|trainer.py:811] 2024-09-09 12:16:15,508 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:16:15,510 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:16:15,510 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:16:15,510 >>   Batch size = 8


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:04, 74.15it/s]

  5%|β–Œ         | 16/315 [00:00<00:04, 72.87it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 74.59it/s]

 10%|β–ˆ         | 32/315 [00:00<00:04, 70.63it/s]

 13%|β–ˆβ–Ž        | 40/315 [00:00<00:03, 71.80it/s]

 15%|β–ˆβ–Œ        | 48/315 [00:00<00:03, 72.49it/s]

 18%|β–ˆβ–Š        | 56/315 [00:00<00:03, 72.18it/s]

 20%|β–ˆβ–ˆ        | 64/315 [00:00<00:03, 70.11it/s]

 23%|β–ˆβ–ˆβ–Ž       | 72/315 [00:00<00:03, 72.26it/s]

 25%|β–ˆβ–ˆβ–Œ       | 80/315 [00:01<00:03, 68.95it/s]

 28%|β–ˆβ–ˆβ–Š       | 87/315 [00:01<00:03, 67.94it/s]

 30%|β–ˆβ–ˆβ–ˆ       | 95/315 [00:01<00:03, 69.32it/s]

 32%|β–ˆβ–ˆβ–ˆβ–      | 102/315 [00:01<00:03, 65.97it/s]

 35%|β–ˆβ–ˆβ–ˆβ–      | 110/315 [00:01<00:02, 68.77it/s]

 37%|β–ˆβ–ˆβ–ˆβ–‹      | 118/315 [00:01<00:02, 70.24it/s]

 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 126/315 [00:01<00:02, 67.00it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 134/315 [00:01<00:02, 67.51it/s]

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 141/315 [00:02<00:02, 68.03it/s]

 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 149/315 [00:02<00:02, 70.61it/s]

 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 157/315 [00:02<00:02, 72.86it/s]

 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 165/315 [00:02<00:02, 71.30it/s]

 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 173/315 [00:02<00:02, 70.07it/s]

 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 181/315 [00:02<00:01, 67.81it/s]

 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 189/315 [00:02<00:01, 68.05it/s]

 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 196/315 [00:02<00:01, 67.00it/s]

 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 203/315 [00:02<00:01, 64.45it/s]

 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 210/315 [00:03<00:01, 65.01it/s]

 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 218/315 [00:03<00:01, 68.74it/s]

 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 226/315 [00:03<00:01, 71.36it/s]

 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 235/315 [00:03<00:01, 74.60it/s]

 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 243/315 [00:03<00:01, 70.81it/s]

 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 251/315 [00:03<00:00, 70.96it/s]

 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 259/315 [00:03<00:00, 68.92it/s]

 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 267/315 [00:03<00:00, 70.16it/s]

 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 276/315 [00:03<00:00, 73.45it/s]

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 284/315 [00:04<00:00, 73.52it/s]

 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 292/315 [00:04<00:00, 71.60it/s]

 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 300/315 [00:04<00:00, 71.31it/s]

 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 308/315 [00:04<00:00, 71.30it/s]
                                                  


                                                 

 10%|β–ˆ         | 171/1710 [01:25<11:08,  2.30it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 71.30it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:16:21,499 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-171
[INFO|configuration_utils.py:472] 2024-09-09 12:16:21,501 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-171/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:16:22,527 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-171/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:16:22,528 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-171/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:16:22,529 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-171/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:16:25,565 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:16:25,565 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 10%|β–ˆ         | 172/1710 [01:30<1:27:43,  3.42s/it]
 10%|β–ˆ         | 173/1710 [01:30<1:05:49,  2.57s/it]
 10%|β–ˆ         | 174/1710 [01:31<49:01,  1.92s/it]  
 10%|β–ˆ         | 175/1710 [01:31<37:24,  1.46s/it]
 10%|β–ˆ         | 176/1710 [01:32<29:43,  1.16s/it]
 10%|β–ˆ         | 177/1710 [01:32<23:13,  1.10it/s]
 10%|β–ˆ         | 178/1710 [01:32<19:22,  1.32it/s]
 10%|β–ˆ         | 179/1710 [01:33<16:39,  1.53it/s]
 11%|β–ˆ         | 180/1710 [01:33<14:52,  1.71it/s]
 11%|β–ˆ         | 181/1710 [01:34<13:53,  1.84it/s]
 11%|β–ˆ         | 182/1710 [01:34<13:02,  1.95it/s]
 11%|β–ˆ         | 183/1710 [01:34<12:03,  2.11it/s]
 11%|β–ˆ         | 184/1710 [01:35<11:05,  2.29it/s]
 11%|β–ˆ         | 185/1710 [01:35<11:05,  2.29it/s]
 11%|β–ˆ         | 186/1710 [01:36<10:52,  2.33it/s]
 11%|β–ˆ         | 187/1710 [01:36<10:16,  2.47it/s]
 11%|β–ˆ         | 188/1710 [01:37<11:20,  2.24it/s]
 11%|β–ˆ         | 189/1710 [01:37<10:06,  2.51it/s]
 11%|β–ˆ         | 190/1710 [01:37<10:00,  2.53it/s]
 11%|β–ˆ         | 191/1710 [01:38<10:40,  2.37it/s]
 11%|β–ˆ         | 192/1710 [01:38<13:43,  1.84it/s]
 11%|β–ˆβ–        | 193/1710 [01:39<13:01,  1.94it/s]
 11%|β–ˆβ–        | 194/1710 [01:40<14:45,  1.71it/s]
 11%|β–ˆβ–        | 195/1710 [01:40<13:18,  1.90it/s]
 11%|β–ˆβ–        | 196/1710 [01:41<12:48,  1.97it/s]
 12%|β–ˆβ–        | 197/1710 [01:41<11:50,  2.13it/s]
 12%|β–ˆβ–        | 198/1710 [01:41<12:19,  2.05it/s]
 12%|β–ˆβ–        | 199/1710 [01:42<11:26,  2.20it/s]
 12%|β–ˆβ–        | 200/1710 [01:42<11:07,  2.26it/s]
 12%|β–ˆβ–        | 201/1710 [01:43<11:23,  2.21it/s]
 12%|β–ˆβ–        | 202/1710 [01:43<11:44,  2.14it/s]
 12%|β–ˆβ–        | 203/1710 [01:44<11:12,  2.24it/s]
 12%|β–ˆβ–        | 204/1710 [01:44<11:04,  2.27it/s]
 12%|β–ˆβ–        | 205/1710 [01:44<10:26,  2.40it/s]
 12%|β–ˆβ–        | 206/1710 [01:45<10:31,  2.38it/s]
 12%|β–ˆβ–        | 207/1710 [01:45<10:37,  2.36it/s]
 12%|β–ˆβ–        | 208/1710 [01:46<10:40,  2.35it/s]
 12%|β–ˆβ–        | 209/1710 [01:46<10:26,  2.40it/s]
 12%|β–ˆβ–        | 210/1710 [01:47<10:21,  2.41it/s]
 12%|β–ˆβ–        | 211/1710 [01:47<13:31,  1.85it/s]
 12%|β–ˆβ–        | 212/1710 [01:48<12:25,  2.01it/s]
 12%|β–ˆβ–        | 213/1710 [01:48<11:29,  2.17it/s]
 13%|β–ˆβ–Ž        | 214/1710 [01:48<10:48,  2.31it/s]
 13%|β–ˆβ–Ž        | 215/1710 [01:49<11:08,  2.24it/s]
 13%|β–ˆβ–Ž        | 216/1710 [01:49<11:34,  2.15it/s]
 13%|β–ˆβ–Ž        | 217/1710 [01:50<10:57,  2.27it/s]
 13%|β–ˆβ–Ž        | 218/1710 [01:50<11:25,  2.18it/s]
 13%|β–ˆβ–Ž        | 219/1710 [01:51<10:37,  2.34it/s]
 13%|β–ˆβ–Ž        | 220/1710 [01:51<10:59,  2.26it/s]
 13%|β–ˆβ–Ž        | 221/1710 [01:52<11:41,  2.12it/s]
 13%|β–ˆβ–Ž        | 222/1710 [01:52<11:35,  2.14it/s]
 13%|β–ˆβ–Ž        | 223/1710 [01:53<10:35,  2.34it/s]
 13%|β–ˆβ–Ž        | 224/1710 [01:53<10:22,  2.39it/s]
 13%|β–ˆβ–Ž        | 225/1710 [01:53<11:22,  2.18it/s]
 13%|β–ˆβ–Ž        | 226/1710 [01:54<10:48,  2.29it/s]
 13%|β–ˆβ–Ž        | 227/1710 [01:55<15:06,  1.64it/s]
 13%|β–ˆβ–Ž        | 228/1710 [01:55<15:03,  1.64it/s]
 13%|β–ˆβ–Ž        | 229/1710 [01:56<13:49,  1.79it/s]
 13%|β–ˆβ–Ž        | 230/1710 [01:56<13:40,  1.80it/s]
 14%|β–ˆβ–Ž        | 231/1710 [01:57<12:47,  1.93it/s]
 14%|β–ˆβ–Ž        | 232/1710 [01:57<11:18,  2.18it/s]
 14%|β–ˆβ–Ž        | 233/1710 [01:58<11:45,  2.09it/s]
 14%|β–ˆβ–Ž        | 234/1710 [01:58<11:04,  2.22it/s]
 14%|β–ˆβ–Ž        | 235/1710 [01:58<10:23,  2.37it/s]
 14%|β–ˆβ–        | 236/1710 [01:59<10:08,  2.42it/s]
 14%|β–ˆβ–        | 237/1710 [01:59<11:05,  2.21it/s]
 14%|β–ˆβ–        | 238/1710 [02:00<13:19,  1.84it/s]
 14%|β–ˆβ–        | 239/1710 [02:01<12:42,  1.93it/s]
 14%|β–ˆβ–        | 240/1710 [02:01<11:38,  2.10it/s]
 14%|β–ˆβ–        | 241/1710 [02:01<10:37,  2.30it/s]
 14%|β–ˆβ–        | 242/1710 [02:02<10:17,  2.38it/s]
 14%|β–ˆβ–        | 243/1710 [02:02<10:50,  2.25it/s]
 14%|β–ˆβ–        | 244/1710 [02:03<10:29,  2.33it/s]
 14%|β–ˆβ–        | 245/1710 [02:03<10:30,  2.32it/s]
 14%|β–ˆβ–        | 246/1710 [02:04<11:29,  2.12it/s]
 14%|β–ˆβ–        | 247/1710 [02:04<11:58,  2.04it/s]
 15%|β–ˆβ–        | 248/1710 [02:05<11:34,  2.10it/s]
 15%|β–ˆβ–        | 249/1710 [02:05<10:23,  2.34it/s]
 15%|β–ˆβ–        | 250/1710 [02:05<10:26,  2.33it/s]
 15%|β–ˆβ–        | 251/1710 [02:06<10:35,  2.30it/s]
 15%|β–ˆβ–        | 252/1710 [02:06<10:23,  2.34it/s]
 15%|β–ˆβ–        | 253/1710 [02:07<10:17,  2.36it/s]
 15%|β–ˆβ–        | 254/1710 [02:07<12:00,  2.02it/s]
 15%|β–ˆβ–        | 255/1710 [02:08<11:09,  2.17it/s]
 15%|β–ˆβ–        | 256/1710 [02:08<11:16,  2.15it/s]
 15%|β–ˆβ–Œ        | 257/1710 [02:09<11:21,  2.13it/s]
 15%|β–ˆβ–Œ        | 258/1710 [02:09<10:36,  2.28it/s]
 15%|β–ˆβ–Œ        | 259/1710 [02:09<10:12,  2.37it/s]
 15%|β–ˆβ–Œ        | 260/1710 [02:10<10:50,  2.23it/s]
 15%|β–ˆβ–Œ        | 261/1710 [02:10<11:02,  2.19it/s]
 15%|β–ˆβ–Œ        | 262/1710 [02:11<11:02,  2.18it/s]
 15%|β–ˆβ–Œ        | 263/1710 [02:11<10:14,  2.35it/s]
 15%|β–ˆβ–Œ        | 264/1710 [02:12<11:19,  2.13it/s]
 15%|β–ˆβ–Œ        | 265/1710 [02:12<13:03,  1.84it/s]
 16%|β–ˆβ–Œ        | 266/1710 [02:13<11:58,  2.01it/s]
 16%|β–ˆβ–Œ        | 267/1710 [02:13<11:15,  2.14it/s]
 16%|β–ˆβ–Œ        | 268/1710 [02:14<11:35,  2.07it/s]
 16%|β–ˆβ–Œ        | 269/1710 [02:14<11:31,  2.08it/s]
 16%|β–ˆβ–Œ        | 270/1710 [02:15<11:24,  2.11it/s]
 16%|β–ˆβ–Œ        | 271/1710 [02:15<11:16,  2.13it/s]
 16%|β–ˆβ–Œ        | 272/1710 [02:16<11:15,  2.13it/s]
 16%|β–ˆβ–Œ        | 273/1710 [02:16<11:04,  2.16it/s]
 16%|β–ˆβ–Œ        | 274/1710 [02:17<12:48,  1.87it/s]
 16%|β–ˆβ–Œ        | 275/1710 [02:17<11:30,  2.08it/s]
 16%|β–ˆβ–Œ        | 276/1710 [02:17<10:30,  2.28it/s]
 16%|β–ˆβ–Œ        | 277/1710 [02:18<10:22,  2.30it/s]
 16%|β–ˆβ–‹        | 278/1710 [02:18<10:22,  2.30it/s]
 16%|β–ˆβ–‹        | 279/1710 [02:19<10:49,  2.20it/s]
 16%|β–ˆβ–‹        | 280/1710 [02:20<12:41,  1.88it/s]
 16%|β–ˆβ–‹        | 281/1710 [02:20<12:01,  1.98it/s]
 16%|β–ˆβ–‹        | 282/1710 [02:21<12:14,  1.94it/s]
 17%|β–ˆβ–‹        | 283/1710 [02:21<10:55,  2.18it/s]
 17%|β–ˆβ–‹        | 284/1710 [02:21<10:41,  2.22it/s]
 17%|β–ˆβ–‹        | 285/1710 [02:22<10:13,  2.32it/s]
 17%|β–ˆβ–‹        | 286/1710 [02:22<10:22,  2.29it/s]
 17%|β–ˆβ–‹        | 287/1710 [02:23<10:45,  2.20it/s]
 17%|β–ˆβ–‹        | 288/1710 [02:23<10:03,  2.36it/s]
 17%|β–ˆβ–‹        | 289/1710 [02:23<09:55,  2.39it/s]
 17%|β–ˆβ–‹        | 290/1710 [02:24<10:40,  2.22it/s]
 17%|β–ˆβ–‹        | 291/1710 [02:24<10:06,  2.34it/s]
 17%|β–ˆβ–‹        | 292/1710 [02:25<09:28,  2.49it/s]
 17%|β–ˆβ–‹        | 293/1710 [02:25<12:32,  1.88it/s]
 17%|β–ˆβ–‹        | 294/1710 [02:26<12:01,  1.96it/s]
 17%|β–ˆβ–‹        | 295/1710 [02:26<11:05,  2.13it/s]
 17%|β–ˆβ–‹        | 296/1710 [02:27<11:38,  2.02it/s]
 17%|β–ˆβ–‹        | 297/1710 [02:27<10:40,  2.20it/s]
 17%|β–ˆβ–‹        | 298/1710 [02:28<10:08,  2.32it/s]
 17%|β–ˆβ–‹        | 299/1710 [02:28<10:36,  2.22it/s]
 18%|β–ˆβ–Š        | 300/1710 [02:29<10:54,  2.15it/s]
 18%|β–ˆβ–Š        | 301/1710 [02:29<10:41,  2.20it/s]
 18%|β–ˆβ–Š        | 302/1710 [02:29<10:11,  2.30it/s]
 18%|β–ˆβ–Š        | 303/1710 [02:30<10:28,  2.24it/s]
 18%|β–ˆβ–Š        | 304/1710 [02:30<10:20,  2.26it/s]
 18%|β–ˆβ–Š        | 305/1710 [02:31<10:27,  2.24it/s]
 18%|β–ˆβ–Š        | 306/1710 [02:31<10:34,  2.21it/s]
 18%|β–ˆβ–Š        | 307/1710 [02:32<11:00,  2.12it/s]
 18%|β–ˆβ–Š        | 308/1710 [02:32<11:50,  1.97it/s]
 18%|β–ˆβ–Š        | 309/1710 [02:33<10:55,  2.14it/s]
 18%|β–ˆβ–Š        | 310/1710 [02:33<12:16,  1.90it/s]
 18%|β–ˆβ–Š        | 311/1710 [02:34<11:21,  2.05it/s]
 18%|β–ˆβ–Š        | 312/1710 [02:34<12:12,  1.91it/s]
 18%|β–ˆβ–Š        | 313/1710 [02:35<12:28,  1.87it/s]
 18%|β–ˆβ–Š        | 314/1710 [02:35<12:34,  1.85it/s]
 18%|β–ˆβ–Š        | 315/1710 [02:36<11:26,  2.03it/s]
 18%|β–ˆβ–Š        | 316/1710 [02:36<10:34,  2.20it/s]
 19%|β–ˆβ–Š        | 317/1710 [02:37<12:28,  1.86it/s]
 19%|β–ˆβ–Š        | 318/1710 [02:38<14:03,  1.65it/s]
 19%|β–ˆβ–Š        | 319/1710 [02:38<13:08,  1.76it/s]
 19%|β–ˆβ–Š        | 320/1710 [02:39<12:58,  1.79it/s]
 19%|β–ˆβ–‰        | 321/1710 [02:39<11:26,  2.02it/s]
 19%|β–ˆβ–‰        | 322/1710 [02:40<12:01,  1.92it/s]
 19%|β–ˆβ–‰        | 323/1710 [02:40<12:13,  1.89it/s]
 19%|β–ˆβ–‰        | 324/1710 [02:41<11:53,  1.94it/s]
 19%|β–ˆβ–‰        | 325/1710 [02:41<11:28,  2.01it/s]
 19%|β–ˆβ–‰        | 326/1710 [02:42<10:41,  2.16it/s]
 19%|β–ˆβ–‰        | 327/1710 [02:42<10:45,  2.14it/s]
 19%|β–ˆβ–‰        | 328/1710 [02:42<10:48,  2.13it/s]
 19%|β–ˆβ–‰        | 329/1710 [02:43<09:59,  2.31it/s]
 19%|β–ˆβ–‰        | 330/1710 [02:43<10:30,  2.19it/s]
 19%|β–ˆβ–‰        | 331/1710 [02:44<10:30,  2.19it/s]
 19%|β–ˆβ–‰        | 332/1710 [02:44<10:29,  2.19it/s]
 19%|β–ˆβ–‰        | 333/1710 [02:45<09:55,  2.31it/s]
 20%|β–ˆβ–‰        | 334/1710 [02:45<09:40,  2.37it/s]
 20%|β–ˆβ–‰        | 335/1710 [02:45<09:28,  2.42it/s]
 20%|β–ˆβ–‰        | 336/1710 [02:46<09:32,  2.40it/s]
 20%|β–ˆβ–‰        | 337/1710 [02:46<09:06,  2.51it/s]
 20%|β–ˆβ–‰        | 338/1710 [02:47<09:31,  2.40it/s]
 20%|β–ˆβ–‰        | 339/1710 [02:47<09:23,  2.44it/s]
 20%|β–ˆβ–‰        | 340/1710 [02:48<10:43,  2.13it/s]
 20%|β–ˆβ–‰        | 341/1710 [02:48<12:19,  1.85it/s]
 20%|β–ˆβ–ˆ        | 342/1710 [02:49<11:08,  2.05it/s][INFO|trainer.py:811] 2024-09-09 12:17:44,889 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:17:44,891 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:17:44,891 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:17:44,891 >>   Batch size = 8
{'eval_loss': 0.15023551881313324, 'eval_precision': 0.5421052631578948, 'eval_recall': 0.6765188834154351, 'eval_f1': 0.6018991964937911, 'eval_accuracy': 0.9458275851005807, 'eval_runtime': 5.988, 'eval_samples_per_second': 420.673, 'eval_steps_per_second': 52.605, 'epoch': 1.0}


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:03, 77.06it/s]

  5%|β–Œ         | 16/315 [00:00<00:03, 75.05it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 76.55it/s]

 10%|β–ˆ         | 32/315 [00:00<00:03, 71.87it/s]

 13%|β–ˆβ–Ž        | 41/315 [00:00<00:03, 75.36it/s]

 16%|β–ˆβ–Œ        | 49/315 [00:00<00:03, 74.50it/s]

 18%|β–ˆβ–Š        | 57/315 [00:00<00:03, 74.68it/s]

 21%|β–ˆβ–ˆ        | 65/315 [00:00<00:03, 72.13it/s]

 23%|β–ˆβ–ˆβ–Ž       | 73/315 [00:00<00:03, 74.30it/s]

 26%|β–ˆβ–ˆβ–Œ       | 81/315 [00:01<00:03, 70.26it/s]

 28%|β–ˆβ–ˆβ–Š       | 89/315 [00:01<00:03, 67.44it/s]

 31%|β–ˆβ–ˆβ–ˆ       | 97/315 [00:01<00:03, 67.41it/s]

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 105/315 [00:01<00:03, 69.04it/s]

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 113/315 [00:01<00:02, 70.72it/s]

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 121/315 [00:01<00:02, 68.80it/s]

 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 129/315 [00:01<00:02, 69.57it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 136/315 [00:01<00:02, 68.46it/s]

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 143/315 [00:02<00:02, 68.74it/s]

 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 152/315 [00:02<00:02, 72.87it/s]

 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 160/315 [00:02<00:02, 72.87it/s]

 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 168/315 [00:02<00:02, 71.56it/s]

 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 176/315 [00:02<00:01, 70.53it/s]

 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 184/315 [00:02<00:01, 68.57it/s]

 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 192/315 [00:02<00:01, 68.80it/s]

 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 199/315 [00:02<00:01, 65.97it/s]

 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 206/315 [00:02<00:01, 64.38it/s]

 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 214/315 [00:03<00:01, 67.85it/s]

 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 222/315 [00:03<00:01, 69.75it/s]

 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 231/315 [00:03<00:01, 73.13it/s]

 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 239/315 [00:03<00:01, 74.53it/s]

 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 247/315 [00:03<00:00, 70.64it/s]

 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 255/315 [00:03<00:00, 69.22it/s]

 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 263/315 [00:03<00:00, 70.34it/s]

 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 271/315 [00:03<00:00, 72.74it/s]

 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 280/315 [00:03<00:00, 75.27it/s]

 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 288/315 [00:04<00:00, 72.01it/s]

 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 296/315 [00:04<00:00, 70.20it/s]

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 304/315 [00:04<00:00, 71.71it/s]

 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 312/315 [00:04<00:00, 72.20it/s]
                                                  


                                                 

 20%|β–ˆβ–ˆ        | 342/1710 [02:55<11:08,  2.05it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 72.20it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:17:50,795 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-342
[INFO|configuration_utils.py:472] 2024-09-09 12:17:50,796 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-342/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:17:51,803 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-342/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:17:51,804 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-342/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:17:51,804 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-342/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:17:54,812 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:17:54,812 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 20%|β–ˆβ–ˆ        | 343/1710 [02:59<1:18:27,  3.44s/it]
 20%|β–ˆβ–ˆ        | 344/1710 [02:59<57:22,  2.52s/it]  
 20%|β–ˆβ–ˆ        | 345/1710 [03:00<43:17,  1.90s/it]
 20%|β–ˆβ–ˆ        | 346/1710 [03:00<33:11,  1.46s/it]
 20%|β–ˆβ–ˆ        | 347/1710 [03:01<27:33,  1.21s/it]
 20%|β–ˆβ–ˆ        | 348/1710 [03:01<21:44,  1.04it/s]
 20%|β–ˆβ–ˆ        | 349/1710 [03:02<20:28,  1.11it/s]
 20%|β–ˆβ–ˆ        | 350/1710 [03:03<18:14,  1.24it/s]
 21%|β–ˆβ–ˆ        | 351/1710 [03:03<15:22,  1.47it/s]
 21%|β–ˆβ–ˆ        | 352/1710 [03:04<13:56,  1.62it/s]
 21%|β–ˆβ–ˆ        | 353/1710 [03:04<14:17,  1.58it/s]
 21%|β–ˆβ–ˆ        | 354/1710 [03:05<13:53,  1.63it/s]
 21%|β–ˆβ–ˆ        | 355/1710 [03:05<13:50,  1.63it/s]
 21%|β–ˆβ–ˆ        | 356/1710 [03:06<12:28,  1.81it/s]
 21%|β–ˆβ–ˆ        | 357/1710 [03:06<11:08,  2.02it/s]
 21%|β–ˆβ–ˆ        | 358/1710 [03:07<10:43,  2.10it/s]
 21%|β–ˆβ–ˆ        | 359/1710 [03:07<09:37,  2.34it/s]
 21%|β–ˆβ–ˆ        | 360/1710 [03:07<09:03,  2.48it/s]
 21%|β–ˆβ–ˆ        | 361/1710 [03:08<08:53,  2.53it/s]
 21%|β–ˆβ–ˆ        | 362/1710 [03:08<09:32,  2.35it/s]
 21%|β–ˆβ–ˆ        | 363/1710 [03:09<09:32,  2.35it/s]
 21%|β–ˆβ–ˆβ–       | 364/1710 [03:09<08:49,  2.54it/s]
 21%|β–ˆβ–ˆβ–       | 365/1710 [03:09<08:53,  2.52it/s]
 21%|β–ˆβ–ˆβ–       | 366/1710 [03:10<09:56,  2.25it/s]
 21%|β–ˆβ–ˆβ–       | 367/1710 [03:10<09:35,  2.34it/s]
 22%|β–ˆβ–ˆβ–       | 368/1710 [03:11<09:12,  2.43it/s]
 22%|β–ˆβ–ˆβ–       | 369/1710 [03:11<10:02,  2.23it/s]
 22%|β–ˆβ–ˆβ–       | 370/1710 [03:11<09:25,  2.37it/s]
 22%|β–ˆβ–ˆβ–       | 371/1710 [03:12<09:41,  2.30it/s]
 22%|β–ˆβ–ˆβ–       | 372/1710 [03:12<09:22,  2.38it/s]
 22%|β–ˆβ–ˆβ–       | 373/1710 [03:13<09:03,  2.46it/s]
 22%|β–ˆβ–ˆβ–       | 374/1710 [03:13<09:10,  2.43it/s]
 22%|β–ˆβ–ˆβ–       | 375/1710 [03:14<08:54,  2.50it/s]
 22%|β–ˆβ–ˆβ–       | 376/1710 [03:14<09:08,  2.43it/s]
 22%|β–ˆβ–ˆβ–       | 377/1710 [03:14<09:14,  2.40it/s]
 22%|β–ˆβ–ˆβ–       | 378/1710 [03:15<09:53,  2.25it/s]
 22%|β–ˆβ–ˆβ–       | 379/1710 [03:15<10:21,  2.14it/s]
 22%|β–ˆβ–ˆβ–       | 380/1710 [03:16<09:55,  2.23it/s]
 22%|β–ˆβ–ˆβ–       | 381/1710 [03:16<09:40,  2.29it/s]
 22%|β–ˆβ–ˆβ–       | 382/1710 [03:17<09:37,  2.30it/s]
 22%|β–ˆβ–ˆβ–       | 383/1710 [03:17<09:35,  2.31it/s]
 22%|β–ˆβ–ˆβ–       | 384/1710 [03:18<09:47,  2.26it/s]
 23%|β–ˆβ–ˆβ–Ž       | 385/1710 [03:18<09:08,  2.41it/s]
 23%|β–ˆβ–ˆβ–Ž       | 386/1710 [03:19<10:26,  2.11it/s]
 23%|β–ˆβ–ˆβ–Ž       | 387/1710 [03:19<12:56,  1.70it/s]
 23%|β–ˆβ–ˆβ–Ž       | 388/1710 [03:20<12:02,  1.83it/s]
 23%|β–ˆβ–ˆβ–Ž       | 389/1710 [03:20<11:52,  1.86it/s]
 23%|β–ˆβ–ˆβ–Ž       | 390/1710 [03:21<11:20,  1.94it/s]
 23%|β–ˆβ–ˆβ–Ž       | 391/1710 [03:21<10:06,  2.17it/s]
 23%|β–ˆβ–ˆβ–Ž       | 392/1710 [03:22<09:45,  2.25it/s]
 23%|β–ˆβ–ˆβ–Ž       | 393/1710 [03:22<10:25,  2.10it/s]
 23%|β–ˆβ–ˆβ–Ž       | 394/1710 [03:23<10:28,  2.09it/s]
 23%|β–ˆβ–ˆβ–Ž       | 395/1710 [03:23<09:55,  2.21it/s]
 23%|β–ˆβ–ˆβ–Ž       | 396/1710 [03:23<09:36,  2.28it/s]
 23%|β–ˆβ–ˆβ–Ž       | 397/1710 [03:24<10:58,  1.99it/s]
 23%|β–ˆβ–ˆβ–Ž       | 398/1710 [03:25<12:44,  1.72it/s]
 23%|β–ˆβ–ˆβ–Ž       | 399/1710 [03:25<12:00,  1.82it/s]
 23%|β–ˆβ–ˆβ–Ž       | 400/1710 [03:26<11:14,  1.94it/s]
 23%|β–ˆβ–ˆβ–Ž       | 401/1710 [03:26<10:06,  2.16it/s]
 24%|β–ˆβ–ˆβ–Ž       | 402/1710 [03:26<09:23,  2.32it/s]
 24%|β–ˆβ–ˆβ–Ž       | 403/1710 [03:27<10:36,  2.05it/s]
 24%|β–ˆβ–ˆβ–Ž       | 404/1710 [03:27<10:22,  2.10it/s]
 24%|β–ˆβ–ˆβ–Ž       | 405/1710 [03:28<10:20,  2.10it/s]
 24%|β–ˆβ–ˆβ–Ž       | 406/1710 [03:28<09:44,  2.23it/s]
 24%|β–ˆβ–ˆβ–       | 407/1710 [03:29<10:05,  2.15it/s]
 24%|β–ˆβ–ˆβ–       | 408/1710 [03:29<09:21,  2.32it/s]
 24%|β–ˆβ–ˆβ–       | 409/1710 [03:30<09:36,  2.26it/s]
 24%|β–ˆβ–ˆβ–       | 410/1710 [03:30<09:31,  2.28it/s]
 24%|β–ˆβ–ˆβ–       | 411/1710 [03:31<09:52,  2.19it/s]
 24%|β–ˆβ–ˆβ–       | 412/1710 [03:31<09:28,  2.28it/s]
 24%|β–ˆβ–ˆβ–       | 413/1710 [03:31<09:34,  2.26it/s]
 24%|β–ˆβ–ˆβ–       | 414/1710 [03:32<09:32,  2.26it/s]
 24%|β–ˆβ–ˆβ–       | 415/1710 [03:32<09:12,  2.35it/s]
 24%|β–ˆβ–ˆβ–       | 416/1710 [03:33<09:45,  2.21it/s]
 24%|β–ˆβ–ˆβ–       | 417/1710 [03:33<09:32,  2.26it/s]
 24%|β–ˆβ–ˆβ–       | 418/1710 [03:34<09:52,  2.18it/s]
 25%|β–ˆβ–ˆβ–       | 419/1710 [03:34<09:45,  2.21it/s]
 25%|β–ˆβ–ˆβ–       | 420/1710 [03:35<10:07,  2.13it/s]
 25%|β–ˆβ–ˆβ–       | 421/1710 [03:35<09:30,  2.26it/s]
 25%|β–ˆβ–ˆβ–       | 422/1710 [03:35<09:06,  2.36it/s]
 25%|β–ˆβ–ˆβ–       | 423/1710 [03:36<09:18,  2.30it/s]
 25%|β–ˆβ–ˆβ–       | 424/1710 [03:36<09:45,  2.20it/s]
 25%|β–ˆβ–ˆβ–       | 425/1710 [03:37<10:29,  2.04it/s]
 25%|β–ˆβ–ˆβ–       | 426/1710 [03:37<10:44,  1.99it/s]
 25%|β–ˆβ–ˆβ–       | 427/1710 [03:38<10:06,  2.12it/s]
 25%|β–ˆβ–ˆβ–Œ       | 428/1710 [03:39<12:25,  1.72it/s]
 25%|β–ˆβ–ˆβ–Œ       | 429/1710 [03:39<13:00,  1.64it/s]
 25%|β–ˆβ–ˆβ–Œ       | 430/1710 [03:40<11:30,  1.85it/s]
 25%|β–ˆβ–ˆβ–Œ       | 431/1710 [03:40<10:32,  2.02it/s]
 25%|β–ˆβ–ˆβ–Œ       | 432/1710 [03:41<10:52,  1.96it/s]
 25%|β–ˆβ–ˆβ–Œ       | 433/1710 [03:41<10:17,  2.07it/s]
 25%|β–ˆβ–ˆβ–Œ       | 434/1710 [03:42<09:53,  2.15it/s]
 25%|β–ˆβ–ˆβ–Œ       | 435/1710 [03:42<10:07,  2.10it/s]
 25%|β–ˆβ–ˆβ–Œ       | 436/1710 [03:42<10:04,  2.11it/s]
 26%|β–ˆβ–ˆβ–Œ       | 437/1710 [03:43<09:54,  2.14it/s]
 26%|β–ˆβ–ˆβ–Œ       | 438/1710 [03:44<12:59,  1.63it/s]
 26%|β–ˆβ–ˆβ–Œ       | 439/1710 [03:44<11:59,  1.77it/s]
 26%|β–ˆβ–ˆβ–Œ       | 440/1710 [03:45<11:09,  1.90it/s]
 26%|β–ˆβ–ˆβ–Œ       | 441/1710 [03:45<10:51,  1.95it/s]
 26%|β–ˆβ–ˆβ–Œ       | 442/1710 [03:46<10:00,  2.11it/s]
 26%|β–ˆβ–ˆβ–Œ       | 443/1710 [03:46<09:52,  2.14it/s]
 26%|β–ˆβ–ˆβ–Œ       | 444/1710 [03:47<09:27,  2.23it/s]
 26%|β–ˆβ–ˆβ–Œ       | 445/1710 [03:47<09:21,  2.25it/s]
 26%|β–ˆβ–ˆβ–Œ       | 446/1710 [03:47<09:20,  2.26it/s]
 26%|β–ˆβ–ˆβ–Œ       | 447/1710 [03:48<10:06,  2.08it/s]
 26%|β–ˆβ–ˆβ–Œ       | 448/1710 [03:48<10:16,  2.05it/s]
 26%|β–ˆβ–ˆβ–‹       | 449/1710 [03:49<09:41,  2.17it/s]
 26%|β–ˆβ–ˆβ–‹       | 450/1710 [03:49<08:58,  2.34it/s]
 26%|β–ˆβ–ˆβ–‹       | 451/1710 [03:50<08:40,  2.42it/s]
 26%|β–ˆβ–ˆβ–‹       | 452/1710 [03:50<09:03,  2.32it/s]
 26%|β–ˆβ–ˆβ–‹       | 453/1710 [03:51<11:05,  1.89it/s]
 27%|β–ˆβ–ˆβ–‹       | 454/1710 [03:51<10:11,  2.05it/s]
 27%|β–ˆβ–ˆβ–‹       | 455/1710 [03:52<09:53,  2.11it/s]
 27%|β–ˆβ–ˆβ–‹       | 456/1710 [03:52<09:22,  2.23it/s]
 27%|β–ˆβ–ˆβ–‹       | 457/1710 [03:52<08:39,  2.41it/s]
 27%|β–ˆβ–ˆβ–‹       | 458/1710 [03:53<08:28,  2.46it/s]
 27%|β–ˆβ–ˆβ–‹       | 459/1710 [03:53<08:43,  2.39it/s]
 27%|β–ˆβ–ˆβ–‹       | 460/1710 [03:54<08:49,  2.36it/s]
 27%|β–ˆβ–ˆβ–‹       | 461/1710 [03:54<08:40,  2.40it/s]
 27%|β–ˆβ–ˆβ–‹       | 462/1710 [03:54<08:55,  2.33it/s]
 27%|β–ˆβ–ˆβ–‹       | 463/1710 [03:55<09:28,  2.20it/s]
 27%|β–ˆβ–ˆβ–‹       | 464/1710 [03:56<10:01,  2.07it/s]
 27%|β–ˆβ–ˆβ–‹       | 465/1710 [03:56<09:38,  2.15it/s]
 27%|β–ˆβ–ˆβ–‹       | 466/1710 [03:56<08:45,  2.37it/s]
 27%|β–ˆβ–ˆβ–‹       | 467/1710 [03:57<07:57,  2.60it/s]
 27%|β–ˆβ–ˆβ–‹       | 468/1710 [03:57<08:14,  2.51it/s]
 27%|β–ˆβ–ˆβ–‹       | 469/1710 [03:57<08:32,  2.42it/s]
 27%|β–ˆβ–ˆβ–‹       | 470/1710 [03:58<08:52,  2.33it/s]
 28%|β–ˆβ–ˆβ–Š       | 471/1710 [03:58<08:19,  2.48it/s]
 28%|β–ˆβ–ˆβ–Š       | 472/1710 [03:59<08:10,  2.52it/s]
 28%|β–ˆβ–ˆβ–Š       | 473/1710 [03:59<08:03,  2.56it/s]
 28%|β–ˆβ–ˆβ–Š       | 474/1710 [03:59<07:52,  2.61it/s]
 28%|β–ˆβ–ˆβ–Š       | 475/1710 [04:00<08:20,  2.47it/s]
 28%|β–ˆβ–ˆβ–Š       | 476/1710 [04:00<08:21,  2.46it/s]
 28%|β–ˆβ–ˆβ–Š       | 477/1710 [04:01<08:47,  2.34it/s]
 28%|β–ˆβ–ˆβ–Š       | 478/1710 [04:01<09:46,  2.10it/s]
 28%|β–ˆβ–ˆβ–Š       | 479/1710 [04:02<09:09,  2.24it/s]
 28%|β–ˆβ–ˆβ–Š       | 480/1710 [04:02<09:29,  2.16it/s]
 28%|β–ˆβ–ˆβ–Š       | 481/1710 [04:03<09:35,  2.13it/s]
 28%|β–ˆβ–ˆβ–Š       | 482/1710 [04:03<10:04,  2.03it/s]
 28%|β–ˆβ–ˆβ–Š       | 483/1710 [04:04<10:04,  2.03it/s]
 28%|β–ˆβ–ˆβ–Š       | 484/1710 [04:04<09:31,  2.14it/s]
 28%|β–ˆβ–ˆβ–Š       | 485/1710 [04:05<09:25,  2.16it/s]
 28%|β–ˆβ–ˆβ–Š       | 486/1710 [04:05<08:45,  2.33it/s]
 28%|β–ˆβ–ˆβ–Š       | 487/1710 [04:05<09:08,  2.23it/s]
 29%|β–ˆβ–ˆβ–Š       | 488/1710 [04:06<08:39,  2.35it/s]
 29%|β–ˆβ–ˆβ–Š       | 489/1710 [04:06<08:23,  2.42it/s]
 29%|β–ˆβ–ˆβ–Š       | 490/1710 [04:07<08:55,  2.28it/s]
 29%|β–ˆβ–ˆβ–Š       | 491/1710 [04:07<09:03,  2.24it/s]
 29%|β–ˆβ–ˆβ–‰       | 492/1710 [04:08<08:39,  2.34it/s]
 29%|β–ˆβ–ˆβ–‰       | 493/1710 [04:08<09:30,  2.13it/s]
 29%|β–ˆβ–ˆβ–‰       | 494/1710 [04:09<09:31,  2.13it/s]
 29%|β–ˆβ–ˆβ–‰       | 495/1710 [04:09<09:39,  2.09it/s]
 29%|β–ˆβ–ˆβ–‰       | 496/1710 [04:09<08:56,  2.26it/s]
 29%|β–ˆβ–ˆβ–‰       | 497/1710 [04:10<08:47,  2.30it/s]
 29%|β–ˆβ–ˆβ–‰       | 498/1710 [04:10<08:51,  2.28it/s]
 29%|β–ˆβ–ˆβ–‰       | 499/1710 [04:11<08:24,  2.40it/s]
 29%|β–ˆβ–ˆβ–‰       | 500/1710 [04:11<08:24,  2.40it/s]
                                                  

 29%|β–ˆβ–ˆβ–‰       | 500/1710 [04:11<08:24,  2.40it/s]
 29%|β–ˆβ–ˆβ–‰       | 501/1710 [04:12<08:21,  2.41it/s]
 29%|β–ˆβ–ˆβ–‰       | 502/1710 [04:12<08:26,  2.39it/s]
 29%|β–ˆβ–ˆβ–‰       | 503/1710 [04:12<08:06,  2.48it/s]
 29%|β–ˆβ–ˆβ–‰       | 504/1710 [04:13<08:47,  2.29it/s]
 30%|β–ˆβ–ˆβ–‰       | 505/1710 [04:13<08:40,  2.32it/s]
 30%|β–ˆβ–ˆβ–‰       | 506/1710 [04:14<10:01,  2.00it/s]
 30%|β–ˆβ–ˆβ–‰       | 507/1710 [04:14<09:17,  2.16it/s]
 30%|β–ˆβ–ˆβ–‰       | 508/1710 [04:15<09:16,  2.16it/s]
 30%|β–ˆβ–ˆβ–‰       | 509/1710 [04:16<11:07,  1.80it/s]
 30%|β–ˆβ–ˆβ–‰       | 510/1710 [04:16<11:36,  1.72it/s]
 30%|β–ˆβ–ˆβ–‰       | 511/1710 [04:17<10:33,  1.89it/s]
 30%|β–ˆβ–ˆβ–‰       | 512/1710 [04:17<10:06,  1.98it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 513/1710 [04:18<11:39,  1.71it/s][INFO|trainer.py:811] 2024-09-09 12:19:13,918 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:19:13,920 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:19:13,920 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:19:13,920 >>   Batch size = 8
{'eval_loss': 0.15393643081188202, 'eval_precision': 0.5957753240518483, 'eval_recall': 0.6792556102900931, 'eval_f1': 0.6347826086956522, 'eval_accuracy': 0.9468221630466168, 'eval_runtime': 5.9023, 'eval_samples_per_second': 426.784, 'eval_steps_per_second': 53.369, 'epoch': 2.0}
{'loss': 0.1273, 'grad_norm': 1.020290732383728, 'learning_rate': 3.538011695906433e-05, 'epoch': 2.92}


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:04, 76.55it/s]

  5%|β–Œ         | 16/315 [00:00<00:03, 74.76it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 76.64it/s]

 10%|β–ˆ         | 32/315 [00:00<00:03, 72.00it/s]

 13%|β–ˆβ–Ž        | 41/315 [00:00<00:03, 75.14it/s]

 16%|β–ˆβ–Œ        | 49/315 [00:00<00:03, 74.50it/s]

 18%|β–ˆβ–Š        | 57/315 [00:00<00:03, 74.55it/s]

 21%|β–ˆβ–ˆ        | 65/315 [00:00<00:03, 71.94it/s]

 23%|β–ˆβ–ˆβ–Ž       | 74/315 [00:00<00:03, 74.58it/s]

 26%|β–ˆβ–ˆβ–Œ       | 82/315 [00:01<00:03, 70.19it/s]

 29%|β–ˆβ–ˆβ–Š       | 90/315 [00:01<00:03, 67.73it/s]

 31%|β–ˆβ–ˆβ–ˆ       | 97/315 [00:01<00:03, 67.21it/s]

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 105/315 [00:01<00:03, 69.02it/s]

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 113/315 [00:01<00:02, 70.49it/s]

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 121/315 [00:01<00:02, 68.91it/s]

 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 129/315 [00:01<00:02, 69.60it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 136/315 [00:01<00:02, 68.75it/s]

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 143/315 [00:02<00:02, 68.85it/s]

 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 152/315 [00:02<00:02, 72.96it/s]

 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 160/315 [00:02<00:02, 72.98it/s]

 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 168/315 [00:02<00:02, 71.30it/s]

 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 176/315 [00:02<00:01, 70.27it/s]

 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 184/315 [00:02<00:01, 68.32it/s]

 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 192/315 [00:02<00:01, 68.37it/s]

 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 199/315 [00:02<00:01, 65.58it/s]

 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 206/315 [00:02<00:01, 64.03it/s]

 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 214/315 [00:03<00:01, 67.33it/s]

 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 222/315 [00:03<00:01, 69.48it/s]

 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 231/315 [00:03<00:01, 72.82it/s]

 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 239/315 [00:03<00:01, 74.16it/s]

 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 247/315 [00:03<00:00, 69.80it/s]

 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 255/315 [00:03<00:00, 68.36it/s]

 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 263/315 [00:03<00:00, 70.27it/s]

 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 271/315 [00:03<00:00, 72.23it/s]

 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 280/315 [00:03<00:00, 75.28it/s]

 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 288/315 [00:04<00:00, 72.26it/s]

 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 296/315 [00:04<00:00, 70.88it/s]

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 304/315 [00:04<00:00, 71.92it/s]

 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 312/315 [00:04<00:00, 72.12it/s]
                                                  


                                                 

 30%|β–ˆβ–ˆβ–ˆ       | 513/1710 [04:24<11:39,  1.71it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 72.12it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:19:19,842 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-513
[INFO|configuration_utils.py:472] 2024-09-09 12:19:19,843 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-513/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:19:20,869 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-513/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:19:20,870 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-513/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:19:20,871 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-513/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:19:25,899 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:19:25,900 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 30%|β–ˆβ–ˆβ–ˆ       | 514/1710 [04:30<1:23:28,  4.19s/it]
 30%|β–ˆβ–ˆβ–ˆ       | 515/1710 [04:31<1:00:28,  3.04s/it]
 30%|β–ˆβ–ˆβ–ˆ       | 516/1710 [04:31<45:06,  2.27s/it]  
 30%|β–ˆβ–ˆβ–ˆ       | 517/1710 [04:32<33:52,  1.70s/it]
 30%|β–ˆβ–ˆβ–ˆ       | 518/1710 [04:32<27:22,  1.38s/it]
 30%|β–ˆβ–ˆβ–ˆ       | 519/1710 [04:33<21:46,  1.10s/it]
 30%|β–ˆβ–ˆβ–ˆ       | 520/1710 [04:33<17:41,  1.12it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 521/1710 [04:33<14:43,  1.35it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 522/1710 [04:34<13:50,  1.43it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 523/1710 [04:34<11:43,  1.69it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 524/1710 [04:35<10:45,  1.84it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 525/1710 [04:35<11:02,  1.79it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 526/1710 [04:36<10:05,  1.96it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 527/1710 [04:36<09:35,  2.05it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 528/1710 [04:37<09:11,  2.14it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 529/1710 [04:37<08:25,  2.34it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 530/1710 [04:38<10:47,  1.82it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 531/1710 [04:38<11:03,  1.78it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 532/1710 [04:39<09:37,  2.04it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 533/1710 [04:39<09:15,  2.12it/s]
 31%|β–ˆβ–ˆβ–ˆ       | 534/1710 [04:40<08:39,  2.26it/s]
 31%|β–ˆβ–ˆβ–ˆβ–      | 535/1710 [04:40<08:24,  2.33it/s]
 31%|β–ˆβ–ˆβ–ˆβ–      | 536/1710 [04:40<08:06,  2.41it/s]
 31%|β–ˆβ–ˆβ–ˆβ–      | 537/1710 [04:41<08:55,  2.19it/s]
 31%|β–ˆβ–ˆβ–ˆβ–      | 538/1710 [04:41<08:33,  2.28it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 539/1710 [04:42<08:07,  2.40it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 540/1710 [04:42<07:53,  2.47it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 541/1710 [04:43<08:37,  2.26it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 542/1710 [04:43<07:57,  2.44it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 543/1710 [04:43<07:36,  2.56it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 544/1710 [04:44<08:21,  2.32it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 545/1710 [04:44<09:47,  1.98it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 546/1710 [04:45<09:45,  1.99it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 547/1710 [04:45<09:04,  2.14it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 548/1710 [04:46<09:04,  2.13it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 549/1710 [04:46<08:47,  2.20it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 550/1710 [04:47<08:38,  2.24it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 551/1710 [04:47<08:41,  2.22it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 552/1710 [04:47<08:17,  2.33it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 553/1710 [04:48<08:07,  2.37it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 554/1710 [04:48<07:55,  2.43it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 555/1710 [04:49<08:24,  2.29it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 556/1710 [04:49<08:19,  2.31it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 557/1710 [04:50<08:32,  2.25it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 558/1710 [04:50<08:12,  2.34it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 559/1710 [04:51<10:56,  1.75it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 560/1710 [04:51<10:36,  1.81it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 561/1710 [04:52<09:52,  1.94it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 562/1710 [04:52<08:49,  2.17it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 563/1710 [04:53<08:50,  2.16it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 564/1710 [04:53<08:12,  2.33it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 565/1710 [04:53<07:39,  2.49it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 566/1710 [04:54<07:30,  2.54it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 567/1710 [04:54<07:23,  2.58it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 568/1710 [04:55<07:50,  2.43it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 569/1710 [04:55<07:31,  2.53it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 570/1710 [04:56<09:51,  1.93it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 571/1710 [04:56<09:39,  1.96it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 572/1710 [04:57<09:24,  2.02it/s]
 34%|β–ˆβ–ˆβ–ˆβ–Ž      | 573/1710 [04:57<09:13,  2.05it/s]
 34%|β–ˆβ–ˆβ–ˆβ–Ž      | 574/1710 [04:58<09:36,  1.97it/s]
 34%|β–ˆβ–ˆβ–ˆβ–Ž      | 575/1710 [04:58<09:05,  2.08it/s]
 34%|β–ˆβ–ˆβ–ˆβ–Ž      | 576/1710 [04:59<08:39,  2.18it/s]
 34%|β–ˆβ–ˆβ–ˆβ–Ž      | 577/1710 [04:59<08:34,  2.20it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 578/1710 [05:00<08:50,  2.13it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 579/1710 [05:00<08:32,  2.21it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 580/1710 [05:00<08:06,  2.32it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 581/1710 [05:01<08:09,  2.31it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 582/1710 [05:01<07:38,  2.46it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 583/1710 [05:01<07:14,  2.60it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 584/1710 [05:02<07:44,  2.42it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 585/1710 [05:02<07:44,  2.42it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 586/1710 [05:03<07:47,  2.41it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 587/1710 [05:03<09:00,  2.08it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 588/1710 [05:04<08:40,  2.16it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 589/1710 [05:04<08:32,  2.19it/s]
 35%|β–ˆβ–ˆβ–ˆβ–      | 590/1710 [05:05<08:24,  2.22it/s]
 35%|β–ˆβ–ˆβ–ˆβ–      | 591/1710 [05:05<08:05,  2.30it/s]
 35%|β–ˆβ–ˆβ–ˆβ–      | 592/1710 [05:06<09:13,  2.02it/s]
 35%|β–ˆβ–ˆβ–ˆβ–      | 593/1710 [05:06<09:40,  1.92it/s]
 35%|β–ˆβ–ˆβ–ˆβ–      | 594/1710 [05:07<09:06,  2.04it/s]
 35%|β–ˆβ–ˆβ–ˆβ–      | 595/1710 [05:07<08:42,  2.14it/s]
 35%|β–ˆβ–ˆβ–ˆβ–      | 596/1710 [05:08<08:30,  2.18it/s]
 35%|β–ˆβ–ˆβ–ˆβ–      | 597/1710 [05:08<10:24,  1.78it/s]
 35%|β–ˆβ–ˆβ–ˆβ–      | 598/1710 [05:09<09:48,  1.89it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 599/1710 [05:09<08:59,  2.06it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 600/1710 [05:10<08:30,  2.17it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 601/1710 [05:10<08:19,  2.22it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 602/1710 [05:10<08:21,  2.21it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 603/1710 [05:11<07:58,  2.31it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 604/1710 [05:12<10:18,  1.79it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 605/1710 [05:12<09:31,  1.94it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 606/1710 [05:13<08:47,  2.09it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 607/1710 [05:13<08:18,  2.21it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 608/1710 [05:13<08:43,  2.11it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 609/1710 [05:14<09:12,  1.99it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 610/1710 [05:14<08:54,  2.06it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 611/1710 [05:15<08:57,  2.04it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 612/1710 [05:15<07:56,  2.30it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 613/1710 [05:16<08:03,  2.27it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 614/1710 [05:16<08:36,  2.12it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 615/1710 [05:17<08:04,  2.26it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 616/1710 [05:17<07:38,  2.39it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 617/1710 [05:18<08:36,  2.12it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 618/1710 [05:18<08:20,  2.18it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 619/1710 [05:18<08:13,  2.21it/s]
 36%|β–ˆβ–ˆβ–ˆβ–‹      | 620/1710 [05:19<08:16,  2.19it/s]
 36%|β–ˆβ–ˆβ–ˆβ–‹      | 621/1710 [05:19<08:33,  2.12it/s]
 36%|β–ˆβ–ˆβ–ˆβ–‹      | 622/1710 [05:20<08:24,  2.16it/s]
 36%|β–ˆβ–ˆβ–ˆβ–‹      | 623/1710 [05:20<08:22,  2.17it/s]
 36%|β–ˆβ–ˆβ–ˆβ–‹      | 624/1710 [05:21<07:48,  2.32it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 625/1710 [05:21<07:59,  2.26it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 626/1710 [05:22<07:37,  2.37it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 627/1710 [05:22<07:36,  2.37it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 628/1710 [05:22<08:07,  2.22it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 629/1710 [05:23<07:33,  2.38it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 630/1710 [05:23<08:02,  2.24it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 631/1710 [05:24<08:40,  2.07it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 632/1710 [05:24<08:11,  2.19it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 633/1710 [05:25<07:37,  2.35it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 634/1710 [05:25<07:31,  2.38it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 635/1710 [05:26<08:41,  2.06it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 636/1710 [05:26<08:05,  2.21it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 637/1710 [05:27<08:06,  2.20it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 638/1710 [05:27<07:46,  2.30it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 639/1710 [05:27<08:09,  2.19it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 640/1710 [05:28<08:13,  2.17it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 641/1710 [05:28<08:43,  2.04it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 642/1710 [05:29<08:12,  2.17it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 643/1710 [05:29<07:43,  2.30it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 644/1710 [05:30<08:09,  2.18it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 645/1710 [05:30<07:59,  2.22it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 646/1710 [05:31<08:13,  2.15it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 647/1710 [05:31<08:10,  2.17it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 648/1710 [05:31<07:40,  2.31it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 649/1710 [05:32<08:02,  2.20it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 650/1710 [05:32<07:46,  2.27it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 651/1710 [05:33<07:36,  2.32it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 652/1710 [05:33<07:36,  2.32it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 653/1710 [05:34<08:27,  2.08it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 654/1710 [05:34<08:15,  2.13it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 655/1710 [05:35<07:37,  2.31it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 656/1710 [05:35<07:20,  2.39it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 657/1710 [05:35<07:07,  2.46it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 658/1710 [05:36<07:23,  2.37it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 659/1710 [05:36<07:54,  2.21it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 660/1710 [05:37<08:19,  2.10it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 661/1710 [05:37<07:50,  2.23it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 662/1710 [05:38<07:44,  2.26it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 663/1710 [05:38<07:43,  2.26it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 664/1710 [05:38<07:08,  2.44it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 665/1710 [05:39<06:53,  2.53it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 666/1710 [05:39<07:16,  2.39it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 667/1710 [05:40<07:20,  2.37it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 668/1710 [05:40<07:04,  2.45it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 669/1710 [05:41<10:09,  1.71it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 670/1710 [05:42<09:09,  1.89it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 671/1710 [05:42<08:57,  1.93it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 672/1710 [05:43<09:56,  1.74it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 673/1710 [05:43<08:53,  1.94it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 674/1710 [05:44<08:35,  2.01it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 675/1710 [05:44<08:25,  2.05it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 676/1710 [05:45<08:25,  2.04it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 677/1710 [05:45<08:01,  2.14it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 678/1710 [05:45<07:40,  2.24it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 679/1710 [05:46<10:30,  1.64it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 680/1710 [05:47<09:10,  1.87it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 681/1710 [05:47<09:52,  1.74it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 682/1710 [05:48<09:09,  1.87it/s]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 683/1710 [05:48<08:13,  2.08it/s]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 684/1710 [05:48<07:29,  2.28it/s][INFO|trainer.py:811] 2024-09-09 12:20:44,622 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:20:44,625 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:20:44,625 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:20:44,625 >>   Batch size = 8
{'eval_loss': 0.1837530881166458, 'eval_precision': 0.6325831702544031, 'eval_recall': 0.7077175697865353, 'eval_f1': 0.6680444329630587, 'eval_accuracy': 0.9468382046263916, 'eval_runtime': 5.9204, 'eval_samples_per_second': 425.477, 'eval_steps_per_second': 53.206, 'epoch': 3.0}


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:03, 77.82it/s]

  5%|β–Œ         | 16/315 [00:00<00:04, 73.85it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 75.96it/s]

 10%|β–ˆ         | 32/315 [00:00<00:03, 71.57it/s]

 13%|β–ˆβ–Ž        | 41/315 [00:00<00:03, 75.27it/s]

 16%|β–ˆβ–Œ        | 49/315 [00:00<00:03, 74.26it/s]

 18%|β–ˆβ–Š        | 57/315 [00:00<00:03, 74.33it/s]

 21%|β–ˆβ–ˆ        | 65/315 [00:00<00:03, 71.75it/s]

 23%|β–ˆβ–ˆβ–Ž       | 73/315 [00:00<00:03, 73.81it/s]

 26%|β–ˆβ–ˆβ–Œ       | 81/315 [00:01<00:03, 70.09it/s]

 28%|β–ˆβ–ˆβ–Š       | 89/315 [00:01<00:03, 67.14it/s]

 31%|β–ˆβ–ˆβ–ˆ       | 97/315 [00:01<00:03, 67.19it/s]

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 105/315 [00:01<00:03, 68.76it/s]

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 113/315 [00:01<00:02, 70.14it/s]

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 121/315 [00:01<00:02, 68.44it/s]

 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 129/315 [00:01<00:02, 69.46it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 136/315 [00:01<00:02, 68.80it/s]

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 143/315 [00:02<00:02, 69.00it/s]

 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 152/315 [00:02<00:02, 73.01it/s]

 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 160/315 [00:02<00:02, 73.09it/s]

 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 168/315 [00:02<00:02, 71.75it/s]

 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 176/315 [00:02<00:01, 70.75it/s]

 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 184/315 [00:02<00:01, 68.76it/s]

 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 192/315 [00:02<00:01, 68.24it/s]

 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 199/315 [00:02<00:01, 65.54it/s]

 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 206/315 [00:02<00:01, 64.34it/s]

 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 214/315 [00:03<00:01, 67.80it/s]

 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 222/315 [00:03<00:01, 69.65it/s]

 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 231/315 [00:03<00:01, 72.94it/s]

 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 239/315 [00:03<00:01, 74.13it/s]

 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 247/315 [00:03<00:00, 70.32it/s]

 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 255/315 [00:03<00:00, 69.10it/s]

 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 263/315 [00:03<00:00, 70.38it/s]

 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 271/315 [00:03<00:00, 72.51it/s]

 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 280/315 [00:03<00:00, 74.93it/s]

 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 288/315 [00:04<00:00, 71.84it/s]

 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 296/315 [00:04<00:00, 70.55it/s]

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 304/315 [00:04<00:00, 71.99it/s]

 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 312/315 [00:04<00:00, 72.72it/s]
                                                  


                                                 

 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 684/1710 [05:54<07:29,  2.28it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 72.72it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:20:50,545 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-684
[INFO|configuration_utils.py:472] 2024-09-09 12:20:50,547 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-684/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:20:51,556 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-684/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:20:51,557 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-684/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:20:51,558 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-684/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:20:54,643 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:20:54,643 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 685/1710 [05:59<58:21,  3.42s/it]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 686/1710 [05:59<43:44,  2.56s/it]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 687/1710 [06:00<33:23,  1.96s/it]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 688/1710 [06:00<26:00,  1.53s/it]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 689/1710 [06:01<20:06,  1.18s/it]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 690/1710 [06:01<16:09,  1.05it/s]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 691/1710 [06:02<13:18,  1.28it/s]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 692/1710 [06:02<11:37,  1.46it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 693/1710 [06:03<12:01,  1.41it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 694/1710 [06:03<10:45,  1.57it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 695/1710 [06:04<09:24,  1.80it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 696/1710 [06:04<08:29,  1.99it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 697/1710 [06:04<07:36,  2.22it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 698/1710 [06:05<08:23,  2.01it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 699/1710 [06:05<07:52,  2.14it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 700/1710 [06:06<07:50,  2.15it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 701/1710 [06:06<08:07,  2.07it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 702/1710 [06:07<07:46,  2.16it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 703/1710 [06:07<07:54,  2.12it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 704/1710 [06:08<07:31,  2.23it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 705/1710 [06:08<07:08,  2.35it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 706/1710 [06:08<07:00,  2.39it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 707/1710 [06:09<06:42,  2.49it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 708/1710 [06:09<06:27,  2.59it/s]
 41%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 709/1710 [06:10<06:31,  2.55it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 710/1710 [06:10<06:26,  2.59it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 711/1710 [06:10<06:33,  2.54it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 712/1710 [06:11<08:21,  1.99it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 713/1710 [06:12<07:48,  2.13it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 714/1710 [06:12<07:09,  2.32it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 715/1710 [06:12<07:21,  2.25it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 716/1710 [06:13<07:31,  2.20it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 717/1710 [06:13<07:34,  2.18it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 718/1710 [06:14<07:23,  2.24it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 719/1710 [06:14<07:04,  2.33it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 720/1710 [06:15<08:07,  2.03it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 721/1710 [06:16<09:23,  1.75it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 722/1710 [06:16<08:31,  1.93it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 723/1710 [06:16<08:00,  2.06it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 724/1710 [06:17<07:26,  2.21it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 725/1710 [06:17<07:33,  2.17it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 726/1710 [06:18<07:30,  2.18it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 727/1710 [06:18<07:21,  2.22it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 728/1710 [06:18<07:16,  2.25it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 729/1710 [06:19<07:16,  2.25it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 730/1710 [06:19<07:37,  2.14it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 731/1710 [06:20<07:16,  2.24it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 732/1710 [06:21<09:06,  1.79it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 733/1710 [06:21<08:17,  1.97it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 734/1710 [06:22<08:05,  2.01it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 735/1710 [06:22<07:20,  2.21it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 736/1710 [06:22<06:48,  2.39it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 737/1710 [06:23<06:53,  2.35it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 738/1710 [06:23<06:33,  2.47it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 739/1710 [06:23<06:47,  2.38it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 740/1710 [06:24<06:53,  2.35it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 741/1710 [06:24<07:03,  2.29it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 742/1710 [06:25<07:20,  2.20it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 743/1710 [06:25<06:52,  2.35it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 744/1710 [06:26<06:45,  2.38it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 745/1710 [06:26<06:27,  2.49it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 746/1710 [06:26<06:33,  2.45it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 747/1710 [06:27<06:34,  2.44it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 748/1710 [06:27<06:53,  2.33it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 749/1710 [06:28<06:32,  2.45it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 750/1710 [06:28<07:04,  2.26it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 751/1710 [06:29<06:52,  2.32it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 752/1710 [06:29<07:07,  2.24it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 753/1710 [06:30<07:13,  2.21it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 754/1710 [06:30<07:17,  2.19it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 755/1710 [06:30<07:24,  2.15it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 756/1710 [06:31<07:10,  2.22it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 757/1710 [06:31<06:52,  2.31it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 758/1710 [06:32<07:40,  2.07it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 759/1710 [06:32<07:50,  2.02it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 760/1710 [06:33<08:20,  1.90it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 761/1710 [06:33<07:52,  2.01it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 762/1710 [06:34<10:14,  1.54it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 763/1710 [06:35<08:51,  1.78it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 764/1710 [06:36<10:01,  1.57it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 765/1710 [06:36<09:41,  1.63it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 766/1710 [06:37<09:38,  1.63it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 767/1710 [06:37<08:34,  1.83it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 768/1710 [06:38<08:11,  1.92it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 769/1710 [06:38<08:35,  1.83it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 770/1710 [06:39<07:59,  1.96it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 771/1710 [06:39<07:10,  2.18it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 772/1710 [06:40<07:18,  2.14it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 773/1710 [06:40<07:18,  2.14it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 774/1710 [06:40<07:09,  2.18it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 775/1710 [06:41<07:41,  2.03it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 776/1710 [06:41<07:22,  2.11it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 777/1710 [06:42<06:46,  2.30it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 778/1710 [06:42<07:29,  2.07it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 779/1710 [06:43<07:40,  2.02it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 780/1710 [06:43<07:20,  2.11it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 781/1710 [06:44<07:23,  2.09it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 782/1710 [06:44<06:49,  2.27it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 783/1710 [06:45<06:29,  2.38it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 784/1710 [06:45<06:20,  2.43it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 785/1710 [06:45<06:20,  2.43it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 786/1710 [06:46<06:33,  2.35it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 787/1710 [06:46<06:20,  2.42it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 788/1710 [06:47<06:37,  2.32it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 789/1710 [06:47<07:32,  2.04it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 790/1710 [06:48<07:11,  2.13it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 791/1710 [06:48<06:46,  2.26it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 792/1710 [06:48<06:25,  2.38it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 793/1710 [06:49<06:33,  2.33it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 794/1710 [06:49<06:33,  2.33it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 795/1710 [06:50<06:37,  2.30it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 796/1710 [06:50<06:44,  2.26it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 797/1710 [06:51<07:03,  2.16it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 798/1710 [06:51<06:49,  2.23it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 799/1710 [06:52<06:26,  2.36it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 800/1710 [06:52<06:12,  2.44it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 801/1710 [06:53<07:40,  1.98it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 802/1710 [06:53<07:04,  2.14it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 803/1710 [06:53<06:59,  2.16it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 804/1710 [06:54<07:15,  2.08it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 805/1710 [06:54<07:01,  2.15it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 806/1710 [06:55<06:39,  2.26it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 807/1710 [06:55<06:47,  2.22it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 808/1710 [06:56<07:02,  2.13it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 809/1710 [06:56<06:48,  2.21it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 810/1710 [06:57<06:37,  2.26it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 811/1710 [06:57<08:25,  1.78it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 812/1710 [06:58<08:27,  1.77it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 813/1710 [06:58<07:42,  1.94it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 814/1710 [06:59<07:15,  2.06it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 815/1710 [06:59<07:01,  2.12it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 816/1710 [07:00<06:50,  2.18it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 817/1710 [07:00<07:47,  1.91it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 818/1710 [07:01<07:30,  1.98it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 819/1710 [07:01<07:12,  2.06it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 820/1710 [07:02<06:52,  2.16it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 821/1710 [07:02<06:21,  2.33it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 822/1710 [07:03<06:41,  2.21it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 823/1710 [07:03<06:46,  2.18it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 824/1710 [07:03<06:27,  2.29it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 825/1710 [07:04<06:34,  2.25it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 826/1710 [07:04<06:15,  2.36it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 827/1710 [07:05<06:25,  2.29it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 828/1710 [07:05<06:08,  2.40it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 829/1710 [07:06<06:18,  2.33it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 830/1710 [07:06<06:09,  2.38it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 831/1710 [07:06<05:47,  2.53it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 832/1710 [07:07<06:40,  2.19it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 833/1710 [07:07<06:10,  2.37it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 834/1710 [07:08<06:16,  2.32it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 835/1710 [07:08<06:11,  2.36it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 836/1710 [07:09<06:44,  2.16it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 837/1710 [07:09<07:02,  2.07it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 838/1710 [07:10<06:59,  2.08it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 839/1710 [07:10<06:50,  2.12it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 840/1710 [07:10<06:34,  2.20it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 841/1710 [07:11<07:24,  1.95it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 842/1710 [07:11<06:39,  2.17it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 843/1710 [07:12<06:14,  2.31it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 844/1710 [07:12<05:52,  2.46it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 845/1710 [07:13<05:44,  2.51it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 846/1710 [07:13<05:48,  2.48it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 847/1710 [07:13<06:03,  2.37it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 848/1710 [07:14<06:24,  2.24it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 849/1710 [07:14<06:08,  2.33it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 850/1710 [07:15<06:31,  2.20it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 851/1710 [07:15<07:16,  1.97it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 852/1710 [07:16<06:58,  2.05it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 853/1710 [07:16<06:22,  2.24it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 854/1710 [07:17<08:00,  1.78it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 855/1710 [07:17<07:02,  2.03it/s][INFO|trainer.py:811] 2024-09-09 12:22:13,597 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:22:13,600 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:22:13,600 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:22:13,600 >>   Batch size = 8
{'eval_loss': 0.20180054008960724, 'eval_precision': 0.6321671525753159, 'eval_recall': 0.7120963327859879, 'eval_f1': 0.6697554697554697, 'eval_accuracy': 0.9466296640893195, 'eval_runtime': 5.9193, 'eval_samples_per_second': 425.559, 'eval_steps_per_second': 53.216, 'epoch': 4.0}


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:03, 78.93it/s]

  5%|β–Œ         | 16/315 [00:00<00:03, 75.67it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 77.43it/s]

 10%|β–ˆ         | 32/315 [00:00<00:03, 72.51it/s]

 13%|β–ˆβ–Ž        | 41/315 [00:00<00:03, 76.59it/s]

 16%|β–ˆβ–Œ        | 49/315 [00:00<00:03, 75.19it/s]

 18%|β–ˆβ–Š        | 57/315 [00:00<00:03, 75.16it/s]

 21%|β–ˆβ–ˆ        | 65/315 [00:00<00:03, 72.01it/s]

 23%|β–ˆβ–ˆβ–Ž       | 73/315 [00:00<00:03, 74.00it/s]

 26%|β–ˆβ–ˆβ–Œ       | 81/315 [00:01<00:03, 70.34it/s]

 28%|β–ˆβ–ˆβ–Š       | 89/315 [00:01<00:03, 67.95it/s]

 31%|β–ˆβ–ˆβ–ˆ       | 97/315 [00:01<00:03, 67.54it/s]

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 105/315 [00:01<00:03, 69.21it/s]

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 113/315 [00:01<00:02, 70.94it/s]

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 121/315 [00:01<00:02, 69.41it/s]

 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 129/315 [00:01<00:02, 70.59it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 137/315 [00:01<00:02, 70.14it/s]

 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 145/315 [00:02<00:02, 70.44it/s]

 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 154/315 [00:02<00:02, 73.99it/s]

 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 162/315 [00:02<00:02, 72.44it/s]

 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 170/315 [00:02<00:02, 71.54it/s]

 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 178/315 [00:02<00:01, 70.94it/s]

 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 186/315 [00:02<00:01, 68.96it/s]

 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 193/315 [00:02<00:01, 68.54it/s]

 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 200/315 [00:02<00:01, 65.85it/s]

 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 207/315 [00:02<00:01, 64.60it/s]

 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 215/315 [00:03<00:01, 67.64it/s]

 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 223/315 [00:03<00:01, 70.13it/s]

 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 232/315 [00:03<00:01, 73.45it/s]

 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 240/315 [00:03<00:01, 73.27it/s]

 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 248/315 [00:03<00:00, 71.10it/s]

 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 256/315 [00:03<00:00, 69.16it/s]

 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 264/315 [00:03<00:00, 70.02it/s]

 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 273/315 [00:03<00:00, 73.29it/s]

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 282/315 [00:03<00:00, 75.61it/s]

 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 290/315 [00:04<00:00, 71.21it/s]

 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 298/315 [00:04<00:00, 70.13it/s]

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 306/315 [00:04<00:00, 72.26it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 314/315 [00:04<00:00, 70.37it/s]
                                                  


                                                 

 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 855/1710 [07:23<07:02,  2.03it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 70.37it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:22:19,502 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-855
[INFO|configuration_utils.py:472] 2024-09-09 12:22:19,503 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-855/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:22:20,520 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-855/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:22:20,521 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-855/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:22:20,521 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-855/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:22:23,617 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:22:23,618 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 856/1710 [07:28<49:47,  3.50s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 857/1710 [07:28<36:38,  2.58s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 858/1710 [07:29<27:38,  1.95s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 859/1710 [07:29<21:05,  1.49s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 860/1710 [07:30<16:46,  1.18s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 861/1710 [07:30<13:59,  1.01it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 862/1710 [07:31<11:25,  1.24it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 863/1710 [07:31<09:20,  1.51it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 864/1710 [07:31<08:31,  1.65it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 865/1710 [07:32<07:42,  1.83it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 866/1710 [07:32<07:16,  1.93it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 867/1710 [07:33<06:57,  2.02it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 868/1710 [07:33<06:51,  2.05it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 869/1710 [07:34<06:43,  2.08it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 870/1710 [07:34<07:00,  2.00it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 871/1710 [07:35<06:47,  2.06it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 872/1710 [07:35<06:29,  2.15it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 873/1710 [07:36<06:31,  2.14it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 874/1710 [07:36<06:16,  2.22it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 875/1710 [07:36<06:07,  2.27it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 876/1710 [07:37<05:35,  2.49it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 877/1710 [07:37<05:57,  2.33it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 878/1710 [07:38<06:00,  2.31it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 879/1710 [07:38<05:42,  2.43it/s]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 880/1710 [07:39<06:07,  2.26it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 881/1710 [07:39<06:57,  1.99it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 882/1710 [07:40<06:40,  2.07it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 883/1710 [07:40<07:21,  1.87it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 884/1710 [07:41<06:38,  2.07it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 885/1710 [07:41<06:25,  2.14it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 886/1710 [07:42<06:17,  2.19it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 887/1710 [07:42<07:21,  1.86it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 888/1710 [07:43<07:38,  1.79it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 889/1710 [07:43<08:01,  1.70it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 890/1710 [07:44<07:40,  1.78it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 891/1710 [07:44<07:02,  1.94it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 892/1710 [07:45<06:47,  2.01it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 893/1710 [07:45<06:52,  1.98it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 894/1710 [07:46<06:43,  2.02it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 895/1710 [07:46<06:01,  2.26it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 896/1710 [07:47<05:50,  2.33it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 897/1710 [07:47<06:04,  2.23it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 898/1710 [07:48<06:09,  2.20it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 899/1710 [07:48<05:43,  2.36it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 900/1710 [07:48<05:47,  2.33it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 901/1710 [07:49<06:07,  2.20it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 902/1710 [07:50<08:15,  1.63it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 903/1710 [07:50<07:47,  1.73it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 904/1710 [07:51<07:18,  1.84it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 905/1710 [07:51<06:44,  1.99it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 906/1710 [07:52<06:32,  2.05it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 907/1710 [07:52<06:15,  2.14it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 908/1710 [07:53<06:47,  1.97it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 909/1710 [07:53<06:41,  1.99it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 910/1710 [07:54<06:20,  2.10it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 911/1710 [07:54<06:38,  2.00it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 912/1710 [07:55<06:58,  1.91it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 913/1710 [07:55<06:27,  2.06it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 914/1710 [07:55<05:57,  2.23it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 915/1710 [07:56<06:04,  2.18it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 916/1710 [07:56<05:44,  2.31it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 917/1710 [07:57<05:30,  2.40it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 918/1710 [07:57<05:12,  2.54it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 919/1710 [07:58<05:43,  2.30it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 920/1710 [07:58<05:45,  2.29it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 921/1710 [07:58<05:41,  2.31it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 922/1710 [07:59<06:45,  1.94it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 923/1710 [08:00<06:24,  2.05it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 924/1710 [08:00<06:09,  2.13it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 925/1710 [08:00<05:41,  2.30it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 926/1710 [08:01<05:57,  2.19it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 927/1710 [08:01<06:03,  2.15it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 928/1710 [08:02<06:14,  2.09it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 929/1710 [08:02<05:51,  2.22it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 930/1710 [08:03<05:34,  2.33it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 931/1710 [08:03<05:30,  2.35it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 932/1710 [08:03<05:29,  2.36it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 933/1710 [08:04<06:02,  2.14it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 934/1710 [08:04<06:01,  2.15it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 935/1710 [08:05<05:49,  2.22it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 936/1710 [08:05<05:35,  2.31it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 937/1710 [08:06<06:00,  2.14it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 938/1710 [08:07<08:03,  1.60it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 939/1710 [08:07<07:56,  1.62it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 940/1710 [08:08<07:14,  1.77it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 941/1710 [08:08<07:01,  1.83it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 942/1710 [08:09<06:21,  2.01it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 943/1710 [08:09<06:01,  2.12it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 944/1710 [08:10<06:22,  2.00it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 945/1710 [08:10<05:49,  2.19it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 946/1710 [08:11<05:49,  2.18it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 947/1710 [08:11<06:53,  1.85it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 948/1710 [08:12<06:45,  1.88it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 949/1710 [08:12<06:26,  1.97it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 950/1710 [08:13<07:00,  1.81it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 951/1710 [08:13<07:05,  1.78it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 952/1710 [08:14<06:54,  1.83it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 953/1710 [08:14<06:01,  2.09it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 954/1710 [08:15<05:49,  2.16it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 955/1710 [08:15<05:30,  2.28it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 956/1710 [08:15<05:10,  2.43it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 957/1710 [08:16<05:13,  2.40it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 958/1710 [08:16<05:25,  2.31it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 959/1710 [08:17<05:57,  2.10it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 960/1710 [08:17<05:30,  2.27it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 961/1710 [08:18<05:24,  2.31it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 962/1710 [08:18<05:26,  2.29it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 963/1710 [08:19<05:29,  2.27it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 964/1710 [08:19<05:09,  2.41it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 965/1710 [08:20<06:07,  2.02it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 966/1710 [08:20<05:42,  2.17it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 967/1710 [08:20<05:14,  2.36it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 968/1710 [08:21<05:08,  2.40it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 969/1710 [08:21<05:04,  2.43it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 970/1710 [08:22<05:14,  2.36it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 971/1710 [08:22<04:55,  2.50it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 972/1710 [08:23<06:03,  2.03it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 973/1710 [08:23<06:12,  1.98it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 974/1710 [08:24<07:20,  1.67it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 975/1710 [08:24<06:34,  1.86it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 976/1710 [08:25<06:18,  1.94it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 977/1710 [08:25<05:57,  2.05it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 978/1710 [08:26<06:02,  2.02it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 979/1710 [08:26<05:29,  2.22it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 980/1710 [08:27<05:33,  2.19it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 981/1710 [08:27<05:57,  2.04it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 982/1710 [08:28<06:16,  1.94it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 983/1710 [08:28<06:18,  1.92it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 984/1710 [08:29<05:58,  2.03it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 985/1710 [08:29<05:48,  2.08it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 986/1710 [08:30<05:43,  2.11it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 987/1710 [08:30<05:17,  2.28it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 988/1710 [08:30<05:01,  2.39it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 989/1710 [08:31<05:23,  2.23it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 990/1710 [08:31<05:09,  2.32it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 991/1710 [08:32<04:58,  2.41it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 992/1710 [08:32<04:56,  2.42it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 993/1710 [08:33<05:11,  2.30it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 994/1710 [08:33<04:50,  2.46it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 995/1710 [08:33<04:38,  2.56it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 996/1710 [08:34<04:56,  2.41it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 997/1710 [08:34<04:58,  2.38it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 998/1710 [08:35<04:50,  2.45it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 999/1710 [08:35<04:52,  2.43it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 1000/1710 [08:36<05:34,  2.13it/s]
                                                   

 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 1000/1710 [08:36<05:34,  2.13it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 1001/1710 [08:36<05:06,  2.31it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 1002/1710 [08:36<04:50,  2.44it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 1003/1710 [08:37<04:54,  2.40it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 1004/1710 [08:37<05:19,  2.21it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1005/1710 [08:38<05:13,  2.25it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1006/1710 [08:38<05:29,  2.14it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1007/1710 [08:39<05:19,  2.20it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1008/1710 [08:39<04:51,  2.41it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1009/1710 [08:39<05:04,  2.30it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1010/1710 [08:40<05:09,  2.26it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1011/1710 [08:40<05:03,  2.30it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1012/1710 [08:41<04:48,  2.42it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1013/1710 [08:41<04:32,  2.56it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1014/1710 [08:41<04:22,  2.65it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1015/1710 [08:42<04:43,  2.45it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1016/1710 [08:42<04:40,  2.48it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1017/1710 [08:43<04:50,  2.38it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1018/1710 [08:43<05:50,  1.98it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1019/1710 [08:44<06:38,  1.73it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1020/1710 [08:45<06:03,  1.90it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1021/1710 [08:45<05:43,  2.00it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1022/1710 [08:45<05:22,  2.13it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1023/1710 [08:46<05:06,  2.24it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1024/1710 [08:46<05:06,  2.24it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1025/1710 [08:47<05:00,  2.28it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1026/1710 [08:47<04:55,  2.32it/s][INFO|trainer.py:811] 2024-09-09 12:23:43,183 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:23:43,185 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:23:43,185 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:23:43,185 >>   Batch size = 8
{'eval_loss': 0.21526136994361877, 'eval_precision': 0.6441176470588236, 'eval_recall': 0.7192118226600985, 'eval_f1': 0.6795965865011637, 'eval_accuracy': 0.9465013314511213, 'eval_runtime': 5.9003, 'eval_samples_per_second': 426.928, 'eval_steps_per_second': 53.387, 'epoch': 5.0}
{'loss': 0.0234, 'grad_norm': 1.644018530845642, 'learning_rate': 2.0760233918128656e-05, 'epoch': 5.85}


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:03, 76.95it/s]

  5%|β–Œ         | 16/315 [00:00<00:04, 73.21it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 74.55it/s]

 10%|β–ˆ         | 32/315 [00:00<00:04, 70.51it/s]

 13%|β–ˆβ–Ž        | 40/315 [00:00<00:03, 73.42it/s]

 15%|β–ˆβ–Œ        | 48/315 [00:00<00:03, 73.85it/s]

 18%|β–ˆβ–Š        | 56/315 [00:00<00:03, 73.02it/s]

 20%|β–ˆβ–ˆ        | 64/315 [00:00<00:03, 70.57it/s]

 23%|β–ˆβ–ˆβ–Ž       | 72/315 [00:00<00:03, 72.53it/s]

 25%|β–ˆβ–ˆβ–Œ       | 80/315 [00:01<00:03, 69.09it/s]

 28%|β–ˆβ–ˆβ–Š       | 87/315 [00:01<00:03, 67.97it/s]

 30%|β–ˆβ–ˆβ–ˆ       | 95/315 [00:01<00:03, 69.43it/s]

 32%|β–ˆβ–ˆβ–ˆβ–      | 102/315 [00:01<00:03, 65.49it/s]

 35%|β–ˆβ–ˆβ–ˆβ–      | 110/315 [00:01<00:02, 68.44it/s]

 37%|β–ˆβ–ˆβ–ˆβ–‹      | 118/315 [00:01<00:02, 69.86it/s]

 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 126/315 [00:01<00:02, 67.35it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 134/315 [00:01<00:02, 67.80it/s]

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 142/315 [00:02<00:02, 68.12it/s]

 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 150/315 [00:02<00:02, 71.28it/s]

 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 158/315 [00:02<00:02, 73.42it/s]

 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 166/315 [00:02<00:02, 71.60it/s]

 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 174/315 [00:02<00:01, 70.67it/s]

 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 182/315 [00:02<00:01, 68.25it/s]

 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 189/315 [00:02<00:01, 68.29it/s]

 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 196/315 [00:02<00:01, 67.83it/s]

 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 203/315 [00:02<00:01, 64.48it/s]

 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 210/315 [00:03<00:01, 64.78it/s]

 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 218/315 [00:03<00:01, 68.51it/s]

 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 226/315 [00:03<00:01, 71.02it/s]

 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 234/315 [00:03<00:01, 73.36it/s]

 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 242/315 [00:03<00:01, 70.52it/s]

 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 250/315 [00:03<00:00, 70.36it/s]

 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 258/315 [00:03<00:00, 68.28it/s]

 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 266/315 [00:03<00:00, 69.51it/s]

 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 275/315 [00:03<00:00, 72.89it/s]

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 283/315 [00:04<00:00, 74.04it/s]

 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 291/315 [00:04<00:00, 70.70it/s]

 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 299/315 [00:04<00:00, 69.87it/s]

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 307/315 [00:04<00:00, 71.23it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:04<00:00, 70.17it/s]
                                                   


                                                 

 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1026/1710 [08:53<04:55,  2.32it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 70.17it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:23:49,149 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1026
[INFO|configuration_utils.py:472] 2024-09-09 12:23:49,150 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1026/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:23:50,155 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1026/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:23:50,156 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1026/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:23:50,156 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1026/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:23:53,206 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:23:53,207 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1027/1710 [08:58<39:37,  3.48s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1028/1710 [08:58<29:05,  2.56s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1029/1710 [08:58<21:41,  1.91s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1030/1710 [08:59<16:26,  1.45s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1031/1710 [08:59<12:41,  1.12s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1032/1710 [09:00<10:32,  1.07it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1033/1710 [09:00<08:59,  1.25it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1034/1710 [09:01<07:56,  1.42it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1035/1710 [09:01<07:15,  1.55it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1036/1710 [09:01<06:09,  1.82it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1037/1710 [09:02<05:33,  2.02it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1038/1710 [09:02<05:15,  2.13it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1039/1710 [09:03<04:51,  2.30it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1040/1710 [09:03<05:13,  2.14it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1041/1710 [09:04<04:55,  2.27it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1042/1710 [09:04<04:48,  2.32it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1043/1710 [09:04<04:38,  2.39it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1044/1710 [09:05<05:08,  2.16it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1045/1710 [09:05<04:50,  2.29it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1046/1710 [09:06<04:43,  2.35it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1047/1710 [09:06<04:48,  2.29it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1048/1710 [09:07<04:46,  2.31it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1049/1710 [09:07<04:50,  2.27it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1050/1710 [09:07<04:38,  2.37it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1051/1710 [09:08<04:37,  2.38it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1052/1710 [09:08<04:19,  2.53it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1053/1710 [09:09<04:18,  2.54it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1054/1710 [09:09<04:27,  2.45it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1055/1710 [09:10<04:53,  2.23it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1056/1710 [09:10<04:24,  2.47it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1057/1710 [09:10<04:37,  2.36it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1058/1710 [09:11<04:57,  2.19it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1059/1710 [09:11<05:03,  2.15it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1060/1710 [09:12<05:09,  2.10it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1061/1710 [09:12<05:11,  2.09it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1062/1710 [09:13<04:58,  2.17it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1063/1710 [09:13<05:08,  2.09it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1064/1710 [09:14<04:40,  2.30it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1065/1710 [09:14<04:20,  2.48it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1066/1710 [09:14<04:29,  2.39it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1067/1710 [09:15<04:32,  2.36it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1068/1710 [09:15<05:05,  2.10it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1069/1710 [09:16<04:32,  2.35it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1070/1710 [09:16<04:28,  2.39it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1071/1710 [09:16<04:18,  2.47it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1072/1710 [09:17<05:07,  2.08it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1073/1710 [09:18<05:44,  1.85it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1074/1710 [09:18<05:55,  1.79it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1075/1710 [09:19<05:28,  1.93it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1076/1710 [09:19<05:03,  2.09it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1077/1710 [09:20<04:43,  2.23it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1078/1710 [09:20<04:22,  2.41it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1079/1710 [09:20<04:22,  2.40it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1080/1710 [09:21<04:25,  2.37it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1081/1710 [09:21<04:50,  2.17it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1082/1710 [09:22<04:39,  2.24it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1083/1710 [09:22<04:30,  2.32it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1084/1710 [09:23<04:32,  2.29it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1085/1710 [09:23<04:11,  2.49it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1086/1710 [09:23<04:00,  2.59it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1087/1710 [09:24<04:19,  2.40it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1088/1710 [09:24<04:35,  2.26it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1089/1710 [09:25<05:35,  1.85it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1090/1710 [09:25<05:04,  2.04it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1091/1710 [09:26<04:29,  2.29it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1092/1710 [09:26<05:02,  2.04it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1093/1710 [09:27<05:13,  1.97it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1094/1710 [09:27<04:56,  2.08it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1095/1710 [09:28<04:38,  2.21it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1096/1710 [09:28<05:23,  1.90it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1097/1710 [09:29<04:57,  2.06it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1098/1710 [09:30<06:33,  1.56it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1099/1710 [09:30<05:41,  1.79it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1100/1710 [09:31<05:33,  1.83it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1101/1710 [09:31<05:38,  1.80it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1102/1710 [09:32<05:19,  1.90it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1103/1710 [09:32<04:44,  2.13it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1104/1710 [09:32<04:31,  2.23it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1105/1710 [09:33<04:31,  2.23it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1106/1710 [09:33<04:24,  2.28it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1107/1710 [09:34<04:28,  2.25it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1108/1710 [09:34<04:13,  2.37it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1109/1710 [09:35<04:31,  2.22it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1110/1710 [09:35<04:38,  2.16it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1111/1710 [09:36<05:03,  1.97it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1112/1710 [09:36<05:04,  1.96it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1113/1710 [09:37<04:49,  2.06it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1114/1710 [09:37<04:18,  2.30it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1115/1710 [09:37<04:20,  2.28it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1116/1710 [09:38<04:15,  2.32it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1117/1710 [09:38<04:12,  2.35it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1118/1710 [09:39<04:17,  2.30it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1119/1710 [09:39<04:29,  2.20it/s]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1120/1710 [09:40<04:28,  2.20it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1121/1710 [09:40<04:45,  2.06it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1122/1710 [09:41<04:44,  2.07it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1123/1710 [09:41<04:30,  2.17it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1124/1710 [09:42<04:18,  2.26it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1125/1710 [09:42<04:41,  2.07it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1126/1710 [09:43<04:29,  2.16it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1127/1710 [09:43<04:21,  2.23it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1128/1710 [09:43<04:41,  2.07it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1129/1710 [09:44<04:42,  2.06it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1130/1710 [09:44<04:21,  2.22it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1131/1710 [09:45<04:12,  2.29it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1132/1710 [09:45<04:42,  2.05it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1133/1710 [09:46<04:31,  2.12it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1134/1710 [09:46<04:02,  2.37it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1135/1710 [09:47<04:03,  2.36it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1136/1710 [09:47<03:54,  2.45it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1137/1710 [09:48<05:01,  1.90it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1138/1710 [09:48<04:45,  2.01it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1139/1710 [09:49<04:49,  1.97it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1140/1710 [09:49<04:36,  2.06it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1141/1710 [09:49<04:15,  2.23it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1142/1710 [09:50<04:12,  2.25it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1143/1710 [09:50<04:04,  2.32it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1144/1710 [09:51<04:03,  2.33it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1145/1710 [09:51<03:47,  2.48it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1146/1710 [09:51<03:48,  2.47it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1147/1710 [09:52<03:51,  2.43it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1148/1710 [09:52<04:10,  2.25it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1149/1710 [09:53<04:03,  2.30it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1150/1710 [09:53<03:52,  2.41it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1151/1710 [09:54<03:53,  2.40it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1152/1710 [09:54<04:14,  2.19it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1153/1710 [09:55<04:16,  2.17it/s]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1154/1710 [09:55<04:38,  1.99it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1155/1710 [09:56<04:29,  2.06it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1156/1710 [09:56<04:20,  2.13it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1157/1710 [09:57<04:09,  2.22it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1158/1710 [09:57<04:18,  2.13it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1159/1710 [09:57<04:10,  2.20it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1160/1710 [09:58<04:29,  2.04it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1161/1710 [09:59<05:03,  1.81it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1162/1710 [09:59<04:31,  2.02it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1163/1710 [10:00<04:23,  2.07it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1164/1710 [10:00<04:11,  2.17it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1165/1710 [10:00<03:45,  2.42it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1166/1710 [10:01<03:48,  2.38it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1167/1710 [10:01<04:29,  2.01it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1168/1710 [10:02<05:20,  1.69it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1169/1710 [10:03<04:50,  1.86it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1170/1710 [10:03<04:29,  2.01it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1171/1710 [10:03<04:15,  2.11it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1172/1710 [10:04<04:12,  2.13it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1173/1710 [10:04<04:26,  2.02it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1174/1710 [10:05<04:57,  1.80it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1175/1710 [10:06<05:18,  1.68it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1176/1710 [10:06<04:45,  1.87it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1177/1710 [10:07<04:22,  2.03it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1178/1710 [10:07<04:10,  2.13it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1179/1710 [10:08<04:16,  2.07it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1180/1710 [10:08<03:59,  2.22it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1181/1710 [10:08<03:46,  2.34it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1182/1710 [10:09<03:45,  2.34it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1183/1710 [10:09<03:46,  2.33it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1184/1710 [10:10<03:36,  2.43it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1185/1710 [10:10<03:53,  2.24it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1186/1710 [10:10<03:48,  2.29it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1187/1710 [10:11<04:04,  2.14it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1188/1710 [10:12<04:12,  2.07it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1189/1710 [10:12<03:57,  2.20it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1190/1710 [10:12<03:51,  2.24it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1191/1710 [10:13<03:57,  2.18it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1192/1710 [10:13<03:55,  2.20it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1193/1710 [10:14<03:55,  2.19it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1194/1710 [10:14<03:50,  2.23it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1195/1710 [10:15<03:40,  2.33it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 1196/1710 [10:15<03:29,  2.45it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1197/1710 [10:15<03:20,  2.56it/s][INFO|trainer.py:811] 2024-09-09 12:25:11,389 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:25:11,391 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:25:11,392 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:25:11,392 >>   Batch size = 8
{'eval_loss': 0.24975360929965973, 'eval_precision': 0.6461383139828369, 'eval_recall': 0.7006020799124247, 'eval_f1': 0.6722689075630252, 'eval_accuracy': 0.9469825788443645, 'eval_runtime': 5.9627, 'eval_samples_per_second': 422.461, 'eval_steps_per_second': 52.829, 'epoch': 6.0}


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:03, 78.25it/s]

  5%|β–Œ         | 16/315 [00:00<00:03, 75.52it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 77.00it/s]

 10%|β–ˆ         | 32/315 [00:00<00:03, 72.63it/s]

 13%|β–ˆβ–Ž        | 41/315 [00:00<00:03, 75.89it/s]

 16%|β–ˆβ–Œ        | 49/315 [00:00<00:03, 75.18it/s]

 18%|β–ˆβ–Š        | 57/315 [00:00<00:03, 75.40it/s]

 21%|β–ˆβ–ˆ        | 65/315 [00:00<00:03, 72.21it/s]

 23%|β–ˆβ–ˆβ–Ž       | 73/315 [00:00<00:03, 74.33it/s]

 26%|β–ˆβ–ˆβ–Œ       | 81/315 [00:01<00:03, 70.75it/s]

 28%|β–ˆβ–ˆβ–Š       | 89/315 [00:01<00:03, 67.39it/s]

 31%|β–ˆβ–ˆβ–ˆ       | 97/315 [00:01<00:03, 67.28it/s]

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 105/315 [00:01<00:03, 68.96it/s]

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 113/315 [00:01<00:02, 70.65it/s]

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 121/315 [00:01<00:02, 69.24it/s]

 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 129/315 [00:01<00:02, 70.23it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 137/315 [00:01<00:02, 69.65it/s]

 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 144/315 [00:02<00:02, 69.41it/s]

 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 153/315 [00:02<00:02, 73.45it/s]

 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 161/315 [00:02<00:02, 72.05it/s]

 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 169/315 [00:02<00:02, 71.92it/s]

 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 177/315 [00:02<00:01, 71.59it/s]

 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 185/315 [00:02<00:01, 69.29it/s]

 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 192/315 [00:02<00:01, 68.95it/s]

 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 199/315 [00:02<00:01, 66.07it/s]

 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 206/315 [00:02<00:01, 64.74it/s]

 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 214/315 [00:03<00:01, 68.47it/s]

 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 222/315 [00:03<00:01, 70.45it/s]

 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 231/315 [00:03<00:01, 73.74it/s]

 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 239/315 [00:03<00:01, 75.02it/s]

 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 247/315 [00:03<00:00, 70.37it/s]

 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 255/315 [00:03<00:00, 69.03it/s]

 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 263/315 [00:03<00:00, 70.69it/s]

 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 271/315 [00:03<00:00, 72.53it/s]

 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 280/315 [00:03<00:00, 75.54it/s]

 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 288/315 [00:04<00:00, 72.37it/s]

 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 296/315 [00:04<00:00, 70.67it/s]

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 304/315 [00:04<00:00, 71.86it/s]

 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 312/315 [00:04<00:00, 72.00it/s]
                                                   


                                                 

 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1197/1710 [10:21<03:20,  2.56it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 72.00it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:25:17,290 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1197
[INFO|configuration_utils.py:472] 2024-09-09 12:25:17,291 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1197/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:25:18,342 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1197/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:25:18,343 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1197/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:25:18,343 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1197/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:25:23,192 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:25:23,192 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1198/1710 [10:28<34:36,  4.06s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1199/1710 [10:28<25:27,  2.99s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1200/1710 [10:29<18:46,  2.21s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1201/1710 [10:29<14:22,  1.69s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1202/1710 [10:30<11:19,  1.34s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1203/1710 [10:30<09:48,  1.16s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1204/1710 [10:31<07:49,  1.08it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1205/1710 [10:31<06:28,  1.30it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1206/1710 [10:32<05:30,  1.53it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1207/1710 [10:32<04:58,  1.69it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1208/1710 [10:33<04:29,  1.86it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1209/1710 [10:33<03:58,  2.10it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1210/1710 [10:34<04:30,  1.85it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1211/1710 [10:34<04:30,  1.84it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1212/1710 [10:35<04:14,  1.96it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1213/1710 [10:35<03:54,  2.12it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1214/1710 [10:35<03:33,  2.32it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1215/1710 [10:36<03:30,  2.35it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1216/1710 [10:36<03:18,  2.48it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1217/1710 [10:36<03:23,  2.43it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 1218/1710 [10:37<03:20,  2.46it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1219/1710 [10:37<03:11,  2.57it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1220/1710 [10:38<03:19,  2.46it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1221/1710 [10:38<03:47,  2.15it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1222/1710 [10:39<03:42,  2.19it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1223/1710 [10:39<03:37,  2.24it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1224/1710 [10:40<04:36,  1.76it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1225/1710 [10:41<04:44,  1.70it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1226/1710 [10:41<04:11,  1.93it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1227/1710 [10:41<04:07,  1.95it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1228/1710 [10:42<03:48,  2.11it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1229/1710 [10:42<03:47,  2.12it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1230/1710 [10:43<03:40,  2.18it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1231/1710 [10:43<03:35,  2.22it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1232/1710 [10:44<03:55,  2.03it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1233/1710 [10:44<03:41,  2.15it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1234/1710 [10:45<03:56,  2.01it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1235/1710 [10:45<03:45,  2.11it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1236/1710 [10:46<03:47,  2.08it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1237/1710 [10:46<03:33,  2.22it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1238/1710 [10:46<03:14,  2.43it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1239/1710 [10:47<03:12,  2.45it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1240/1710 [10:47<03:16,  2.39it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1241/1710 [10:48<03:14,  2.42it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1242/1710 [10:48<03:04,  2.54it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1243/1710 [10:48<03:08,  2.48it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1244/1710 [10:49<03:16,  2.37it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1245/1710 [10:49<03:35,  2.16it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1246/1710 [10:50<03:33,  2.17it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1247/1710 [10:50<03:31,  2.19it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1248/1710 [10:51<03:20,  2.30it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1249/1710 [10:51<03:06,  2.47it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1250/1710 [10:52<03:21,  2.28it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1251/1710 [10:52<03:47,  2.02it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1252/1710 [10:53<03:43,  2.05it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1253/1710 [10:53<03:34,  2.13it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1254/1710 [10:53<03:23,  2.24it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1255/1710 [10:54<03:18,  2.29it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1256/1710 [10:54<03:43,  2.03it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1257/1710 [10:55<03:44,  2.02it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1258/1710 [10:55<03:28,  2.17it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1259/1710 [10:56<03:36,  2.08it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1260/1710 [10:56<03:41,  2.03it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 1261/1710 [10:57<03:42,  2.02it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1262/1710 [10:57<03:43,  2.00it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1263/1710 [10:58<03:36,  2.07it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1264/1710 [10:58<03:20,  2.22it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1265/1710 [10:59<03:15,  2.27it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1266/1710 [11:00<04:15,  1.74it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1267/1710 [11:00<03:44,  1.97it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1268/1710 [11:00<03:25,  2.15it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1269/1710 [11:01<03:19,  2.21it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1270/1710 [11:01<03:33,  2.06it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1271/1710 [11:02<03:16,  2.23it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1272/1710 [11:02<03:21,  2.17it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1273/1710 [11:03<03:22,  2.16it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1274/1710 [11:03<03:18,  2.20it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1275/1710 [11:04<03:33,  2.03it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1276/1710 [11:04<03:24,  2.12it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1277/1710 [11:05<03:39,  1.98it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1278/1710 [11:05<04:03,  1.77it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1279/1710 [11:06<03:33,  2.02it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1280/1710 [11:06<03:45,  1.91it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1281/1710 [11:07<03:38,  1.96it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 1282/1710 [11:07<03:26,  2.07it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1283/1710 [11:08<03:24,  2.09it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1284/1710 [11:08<03:06,  2.28it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1285/1710 [11:08<03:07,  2.27it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1286/1710 [11:09<03:02,  2.32it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1287/1710 [11:09<03:18,  2.13it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1288/1710 [11:10<03:08,  2.23it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1289/1710 [11:10<03:10,  2.22it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1290/1710 [11:11<02:57,  2.36it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1291/1710 [11:11<02:49,  2.47it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1292/1710 [11:11<02:44,  2.54it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1293/1710 [11:12<02:53,  2.40it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1294/1710 [11:12<02:59,  2.32it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1295/1710 [11:13<02:57,  2.33it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1296/1710 [11:13<03:00,  2.29it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1297/1710 [11:13<02:55,  2.35it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1298/1710 [11:14<02:49,  2.42it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1299/1710 [11:14<02:43,  2.51it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1300/1710 [11:15<02:40,  2.56it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1301/1710 [11:15<02:41,  2.53it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1302/1710 [11:16<03:00,  2.26it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 1303/1710 [11:16<02:59,  2.27it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1304/1710 [11:16<02:55,  2.32it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1305/1710 [11:17<03:11,  2.12it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1306/1710 [11:18<03:20,  2.01it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1307/1710 [11:18<03:08,  2.14it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1308/1710 [11:18<03:01,  2.22it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1309/1710 [11:19<02:57,  2.26it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1310/1710 [11:19<02:58,  2.24it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1311/1710 [11:20<02:55,  2.28it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1312/1710 [11:20<03:02,  2.18it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1313/1710 [11:21<02:56,  2.25it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1314/1710 [11:21<02:48,  2.35it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1315/1710 [11:21<02:49,  2.33it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1316/1710 [11:22<02:36,  2.51it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1317/1710 [11:22<02:36,  2.50it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1318/1710 [11:23<02:49,  2.31it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1319/1710 [11:23<03:01,  2.15it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1320/1710 [11:24<02:56,  2.21it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1321/1710 [11:24<02:49,  2.30it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1322/1710 [11:25<03:01,  2.13it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1323/1710 [11:25<03:35,  1.80it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1324/1710 [11:26<03:09,  2.04it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 1325/1710 [11:26<03:05,  2.07it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1326/1710 [11:27<03:05,  2.07it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1327/1710 [11:27<02:47,  2.29it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1328/1710 [11:27<02:53,  2.20it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1329/1710 [11:28<03:16,  1.94it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1330/1710 [11:29<03:11,  1.99it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1331/1710 [11:29<03:10,  1.99it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1332/1710 [11:29<02:49,  2.23it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1333/1710 [11:30<02:57,  2.13it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1334/1710 [11:30<02:48,  2.23it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1335/1710 [11:31<02:46,  2.26it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1336/1710 [11:31<02:34,  2.43it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1337/1710 [11:31<02:28,  2.52it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1338/1710 [11:32<02:30,  2.47it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1339/1710 [11:32<02:26,  2.53it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1340/1710 [11:33<02:22,  2.60it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1341/1710 [11:33<02:35,  2.37it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1342/1710 [11:33<02:36,  2.35it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1343/1710 [11:34<02:21,  2.60it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1344/1710 [11:34<02:28,  2.46it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1345/1710 [11:35<02:28,  2.45it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 1346/1710 [11:35<02:24,  2.52it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1347/1710 [11:35<02:32,  2.37it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1348/1710 [11:36<02:27,  2.45it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1349/1710 [11:36<02:30,  2.39it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1350/1710 [11:37<02:42,  2.22it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1351/1710 [11:37<02:45,  2.16it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1352/1710 [11:38<02:54,  2.05it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1353/1710 [11:39<03:29,  1.70it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1354/1710 [11:39<03:37,  1.63it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1355/1710 [11:40<03:16,  1.80it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1356/1710 [11:40<02:59,  1.98it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1357/1710 [11:41<02:43,  2.16it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1358/1710 [11:41<02:46,  2.12it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1359/1710 [11:42<02:55,  2.00it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1360/1710 [11:42<02:40,  2.18it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1361/1710 [11:42<02:37,  2.22it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1362/1710 [11:43<02:28,  2.35it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1363/1710 [11:43<02:34,  2.24it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1364/1710 [11:44<02:32,  2.27it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1365/1710 [11:44<02:35,  2.23it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1366/1710 [11:45<03:36,  1.59it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 1367/1710 [11:46<03:14,  1.76it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1368/1710 [11:46<02:55,  1.95it/s][INFO|trainer.py:811] 2024-09-09 12:26:42,159 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:26:42,162 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:26:42,162 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:26:42,162 >>   Batch size = 8
{'eval_loss': 0.2653313875198364, 'eval_precision': 0.636231884057971, 'eval_recall': 0.7208538587848933, 'eval_f1': 0.6759045419553503, 'eval_accuracy': 0.9461804998556258, 'eval_runtime': 5.8972, 'eval_samples_per_second': 427.151, 'eval_steps_per_second': 53.415, 'epoch': 7.0}


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:03, 78.29it/s]

  5%|β–Œ         | 16/315 [00:00<00:03, 75.02it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 76.45it/s]

 10%|β–ˆ         | 32/315 [00:00<00:03, 71.97it/s]

 13%|β–ˆβ–Ž        | 41/315 [00:00<00:03, 75.79it/s]

 16%|β–ˆβ–Œ        | 49/315 [00:00<00:03, 75.07it/s]

 18%|β–ˆβ–Š        | 57/315 [00:00<00:03, 75.43it/s]

 21%|β–ˆβ–ˆ        | 65/315 [00:00<00:03, 72.50it/s]

 23%|β–ˆβ–ˆβ–Ž       | 73/315 [00:00<00:03, 74.63it/s]

 26%|β–ˆβ–ˆβ–Œ       | 81/315 [00:01<00:03, 70.79it/s]

 28%|β–ˆβ–ˆβ–Š       | 89/315 [00:01<00:03, 67.40it/s]

 31%|β–ˆβ–ˆβ–ˆ       | 97/315 [00:01<00:03, 67.18it/s]

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 104/315 [00:01<00:03, 67.92it/s]

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 112/315 [00:01<00:02, 69.60it/s]

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 120/315 [00:01<00:02, 69.34it/s]

 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 127/315 [00:01<00:02, 69.05it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 134/315 [00:01<00:02, 68.57it/s]

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 141/315 [00:01<00:02, 68.63it/s]

 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 149/315 [00:02<00:02, 71.03it/s]

 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 157/315 [00:02<00:02, 73.48it/s]

 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 165/315 [00:02<00:02, 72.18it/s]

 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 173/315 [00:02<00:01, 71.55it/s]

 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 181/315 [00:02<00:01, 68.79it/s]

 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 188/315 [00:02<00:01, 69.11it/s]

 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 195/315 [00:02<00:01, 67.25it/s]

 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 202/315 [00:02<00:01, 65.91it/s]

 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 209/315 [00:02<00:01, 65.27it/s]

 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 217/315 [00:03<00:01, 68.10it/s]

 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 225/315 [00:03<00:01, 70.76it/s]

 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 234/315 [00:03<00:01, 74.22it/s]

 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 242/315 [00:03<00:01, 71.48it/s]

 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 250/315 [00:03<00:00, 71.21it/s]

 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 258/315 [00:03<00:00, 68.93it/s]

 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 266/315 [00:03<00:00, 70.07it/s]

 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 275/315 [00:03<00:00, 73.61it/s]

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 283/315 [00:03<00:00, 74.67it/s]

 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 291/315 [00:04<00:00, 72.08it/s]

 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 299/315 [00:04<00:00, 70.98it/s]

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 307/315 [00:04<00:00, 71.83it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:04<00:00, 70.52it/s]
                                                   


                                                 

 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1368/1710 [11:52<02:55,  1.95it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 70.52it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:26:48,070 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1368
[INFO|configuration_utils.py:472] 2024-09-09 12:26:48,072 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1368/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:26:49,101 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1368/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:26:49,102 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1368/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:26:49,103 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1368/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:26:52,194 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:26:52,195 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1369/1710 [11:56<19:51,  3.49s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1370/1710 [11:57<14:28,  2.56s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1371/1710 [11:57<11:06,  1.97s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1372/1710 [11:58<08:31,  1.51s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1373/1710 [11:59<07:28,  1.33s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1374/1710 [11:59<05:54,  1.06s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1375/1710 [12:00<04:53,  1.14it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1376/1710 [12:00<04:04,  1.37it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1377/1710 [12:00<03:26,  1.61it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1378/1710 [12:01<02:59,  1.85it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1379/1710 [12:01<02:45,  2.00it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1380/1710 [12:02<02:33,  2.15it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1381/1710 [12:02<02:32,  2.16it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1382/1710 [12:03<02:40,  2.05it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1383/1710 [12:03<02:37,  2.08it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1384/1710 [12:04<02:38,  2.06it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1385/1710 [12:04<02:31,  2.14it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1386/1710 [12:04<02:37,  2.06it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1387/1710 [12:05<02:28,  2.18it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1388/1710 [12:05<02:26,  2.20it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 1389/1710 [12:06<02:26,  2.19it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1390/1710 [12:06<02:17,  2.32it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1391/1710 [12:07<02:20,  2.27it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1392/1710 [12:07<02:18,  2.30it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1393/1710 [12:07<02:16,  2.32it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1394/1710 [12:08<02:18,  2.28it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1395/1710 [12:08<02:13,  2.36it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1396/1710 [12:09<02:16,  2.29it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1397/1710 [12:09<02:42,  1.93it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1398/1710 [12:10<02:31,  2.06it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1399/1710 [12:11<02:50,  1.82it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1400/1710 [12:11<02:38,  1.96it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1401/1710 [12:11<02:22,  2.16it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1402/1710 [12:12<02:24,  2.13it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1403/1710 [12:12<02:20,  2.18it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1404/1710 [12:13<02:21,  2.16it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1405/1710 [12:13<02:30,  2.03it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1406/1710 [12:14<02:24,  2.10it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1407/1710 [12:15<02:52,  1.76it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1408/1710 [12:16<03:35,  1.40it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1409/1710 [12:16<03:47,  1.32it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1410/1710 [12:17<03:23,  1.48it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1411/1710 [12:17<02:55,  1.71it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1412/1710 [12:18<02:33,  1.94it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1413/1710 [12:18<02:23,  2.08it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1414/1710 [12:18<02:17,  2.16it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1415/1710 [12:19<02:15,  2.17it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1416/1710 [12:19<02:07,  2.30it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1417/1710 [12:20<01:57,  2.49it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1418/1710 [12:20<01:58,  2.46it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1419/1710 [12:20<01:54,  2.54it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1420/1710 [12:21<02:08,  2.26it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1421/1710 [12:21<02:10,  2.21it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1422/1710 [12:22<02:06,  2.27it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1423/1710 [12:22<01:59,  2.41it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1424/1710 [12:23<02:01,  2.36it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1425/1710 [12:23<01:57,  2.43it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1426/1710 [12:24<02:04,  2.29it/s]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1427/1710 [12:24<02:07,  2.23it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1428/1710 [12:24<01:56,  2.42it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1429/1710 [12:25<02:06,  2.23it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1430/1710 [12:25<02:16,  2.05it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1431/1710 [12:26<02:13,  2.10it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1432/1710 [12:26<02:07,  2.18it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1433/1710 [12:27<01:57,  2.35it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1434/1710 [12:27<02:11,  2.10it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1435/1710 [12:28<02:07,  2.16it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1436/1710 [12:28<02:02,  2.24it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1437/1710 [12:28<01:56,  2.35it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1438/1710 [12:29<01:52,  2.43it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1439/1710 [12:29<01:56,  2.33it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1440/1710 [12:30<02:07,  2.11it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1441/1710 [12:30<02:08,  2.09it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1442/1710 [12:31<02:10,  2.06it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1443/1710 [12:31<02:04,  2.15it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1444/1710 [12:32<01:54,  2.31it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1445/1710 [12:32<01:48,  2.45it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1446/1710 [12:33<01:57,  2.24it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1447/1710 [12:33<01:56,  2.25it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1448/1710 [12:33<01:47,  2.44it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1449/1710 [12:34<01:46,  2.46it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1450/1710 [12:34<01:52,  2.31it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1451/1710 [12:35<02:04,  2.09it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1452/1710 [12:35<02:05,  2.06it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1453/1710 [12:36<02:00,  2.12it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1454/1710 [12:36<01:53,  2.26it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1455/1710 [12:37<01:51,  2.28it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1456/1710 [12:37<01:45,  2.41it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1457/1710 [12:37<01:47,  2.36it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1458/1710 [12:38<01:44,  2.41it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1459/1710 [12:38<01:47,  2.33it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1460/1710 [12:39<01:46,  2.34it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1461/1710 [12:39<01:53,  2.19it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1462/1710 [12:40<02:08,  1.94it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1463/1710 [12:40<01:57,  2.10it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1464/1710 [12:41<01:51,  2.21it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1465/1710 [12:41<01:52,  2.18it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1466/1710 [12:41<01:46,  2.28it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1467/1710 [12:42<01:45,  2.30it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1468/1710 [12:42<01:41,  2.38it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1469/1710 [12:43<01:59,  2.02it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1470/1710 [12:44<02:15,  1.77it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1471/1710 [12:44<02:11,  1.82it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1472/1710 [12:45<02:07,  1.86it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1473/1710 [12:45<02:00,  1.96it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1474/1710 [12:46<01:53,  2.09it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1475/1710 [12:46<01:43,  2.28it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1476/1710 [12:46<01:42,  2.29it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1477/1710 [12:47<01:37,  2.38it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1478/1710 [12:47<01:37,  2.38it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1479/1710 [12:48<01:39,  2.32it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1480/1710 [12:48<01:39,  2.30it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1481/1710 [12:49<01:56,  1.97it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1482/1710 [12:49<01:47,  2.12it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1483/1710 [12:50<01:46,  2.13it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1484/1710 [12:50<01:42,  2.21it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1485/1710 [12:51<01:58,  1.89it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1486/1710 [12:51<01:48,  2.07it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1487/1710 [12:52<01:54,  1.96it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1488/1710 [12:52<01:42,  2.16it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1489/1710 [12:52<01:37,  2.28it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1490/1710 [12:53<02:03,  1.79it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1491/1710 [12:54<01:48,  2.02it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1492/1710 [12:54<01:42,  2.13it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1493/1710 [12:54<01:40,  2.15it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1494/1710 [12:55<01:41,  2.13it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1495/1710 [12:55<01:38,  2.19it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1496/1710 [12:56<01:30,  2.37it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1497/1710 [12:56<01:30,  2.35it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1498/1710 [12:57<01:30,  2.35it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1499/1710 [12:57<01:59,  1.77it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1500/1710 [12:58<01:50,  1.90it/s]
                                                   

 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1500/1710 [12:58<01:50,  1.90it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1501/1710 [12:58<01:48,  1.92it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1502/1710 [12:59<01:37,  2.13it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1503/1710 [12:59<01:27,  2.37it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1504/1710 [13:00<01:32,  2.24it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1505/1710 [13:00<01:29,  2.29it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1506/1710 [13:01<01:37,  2.09it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1507/1710 [13:01<01:32,  2.20it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1508/1710 [13:01<01:24,  2.39it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1509/1710 [13:02<01:18,  2.57it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1510/1710 [13:02<01:15,  2.64it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1511/1710 [13:02<01:17,  2.58it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1512/1710 [13:03<01:26,  2.29it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1513/1710 [13:03<01:29,  2.21it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1514/1710 [13:04<01:20,  2.43it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1515/1710 [13:04<01:19,  2.47it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1516/1710 [13:05<01:24,  2.30it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1517/1710 [13:05<01:21,  2.37it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1518/1710 [13:05<01:20,  2.40it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1519/1710 [13:06<01:20,  2.36it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1520/1710 [13:06<01:17,  2.46it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1521/1710 [13:07<01:28,  2.13it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1522/1710 [13:07<01:33,  2.01it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1523/1710 [13:08<01:32,  2.01it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1524/1710 [13:08<01:28,  2.10it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1525/1710 [13:09<01:27,  2.11it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1526/1710 [13:09<01:21,  2.25it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1527/1710 [13:09<01:16,  2.38it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1528/1710 [13:10<01:15,  2.41it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1529/1710 [13:10<01:15,  2.39it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1530/1710 [13:11<01:12,  2.47it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1531/1710 [13:11<01:08,  2.61it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1532/1710 [13:11<01:13,  2.42it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1533/1710 [13:12<01:21,  2.17it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1534/1710 [13:13<01:27,  2.02it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1535/1710 [13:13<01:23,  2.11it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1536/1710 [13:14<01:22,  2.11it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1537/1710 [13:14<01:19,  2.18it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1538/1710 [13:14<01:17,  2.23it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1539/1710 [13:15<01:15,  2.26it/s][INFO|trainer.py:811] 2024-09-09 12:28:10,968 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:28:10,970 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:28:10,970 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:28:10,970 >>   Batch size = 8
{'eval_loss': 0.28080618381500244, 'eval_precision': 0.6529382219989954, 'eval_recall': 0.7115489874110563, 'eval_f1': 0.680984808800419, 'eval_accuracy': 0.9473354935994097, 'eval_runtime': 5.9073, 'eval_samples_per_second': 426.421, 'eval_steps_per_second': 53.324, 'epoch': 8.0}
{'loss': 0.0082, 'grad_norm': 0.22467799484729767, 'learning_rate': 6.140350877192982e-06, 'epoch': 8.77}


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:03, 78.15it/s]

  5%|β–Œ         | 16/315 [00:00<00:03, 75.10it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 76.23it/s]

 10%|β–ˆ         | 32/315 [00:00<00:03, 72.03it/s]

 13%|β–ˆβ–Ž        | 41/315 [00:00<00:03, 75.31it/s]

 16%|β–ˆβ–Œ        | 49/315 [00:00<00:03, 74.22it/s]

 18%|β–ˆβ–Š        | 57/315 [00:00<00:03, 74.53it/s]

 21%|β–ˆβ–ˆ        | 65/315 [00:00<00:03, 71.62it/s]

 23%|β–ˆβ–ˆβ–Ž       | 73/315 [00:00<00:03, 73.27it/s]

 26%|β–ˆβ–ˆβ–Œ       | 81/315 [00:01<00:03, 69.11it/s]

 28%|β–ˆβ–ˆβ–Š       | 88/315 [00:01<00:03, 66.88it/s]

 30%|β–ˆβ–ˆβ–ˆ       | 96/315 [00:01<00:03, 70.07it/s]

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 104/315 [00:01<00:03, 67.39it/s]

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 112/315 [00:01<00:02, 69.18it/s]

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 120/315 [00:01<00:02, 68.81it/s]

 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 127/315 [00:01<00:02, 68.85it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 134/315 [00:01<00:02, 68.15it/s]

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 141/315 [00:01<00:02, 68.66it/s]

 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 149/315 [00:02<00:02, 71.11it/s]

 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 157/315 [00:02<00:02, 73.67it/s]

 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 165/315 [00:02<00:02, 72.41it/s]

 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 173/315 [00:02<00:01, 71.77it/s]

 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 181/315 [00:02<00:01, 69.01it/s]

 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 189/315 [00:02<00:01, 68.89it/s]

 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 196/315 [00:02<00:01, 67.87it/s]

 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 203/315 [00:02<00:01, 65.16it/s]

 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 210/315 [00:03<00:01, 65.43it/s]

 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 218/315 [00:03<00:01, 69.24it/s]

 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 226/315 [00:03<00:01, 71.30it/s]

 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 235/315 [00:03<00:01, 74.27it/s]

 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 243/315 [00:03<00:01, 70.36it/s]

 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 251/315 [00:03<00:00, 70.27it/s]

 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 259/315 [00:03<00:00, 69.06it/s]

 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 267/315 [00:03<00:00, 70.31it/s]

 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 276/315 [00:03<00:00, 73.18it/s]

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 284/315 [00:04<00:00, 73.60it/s]

 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 292/315 [00:04<00:00, 70.96it/s]

 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 300/315 [00:04<00:00, 70.32it/s]

 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 308/315 [00:04<00:00, 70.86it/s]
                                                   


                                                 

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1539/1710 [13:21<01:15,  2.26it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 70.86it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:28:16,907 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1539
[INFO|configuration_utils.py:472] 2024-09-09 12:28:16,908 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1539/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:28:17,937 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1539/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:28:17,938 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1539/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:28:17,939 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1539/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:28:22,554 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:28:22,555 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1540/1710 [13:27<11:03,  3.90s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1541/1710 [13:27<08:00,  2.85s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1542/1710 [13:28<05:53,  2.11s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1543/1710 [13:28<04:32,  1.63s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1544/1710 [13:29<03:37,  1.31s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1545/1710 [13:29<02:50,  1.03s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1546/1710 [13:29<02:18,  1.18it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1547/1710 [13:30<01:55,  1.41it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1548/1710 [13:30<01:37,  1.66it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1549/1710 [13:31<01:27,  1.84it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1550/1710 [13:31<01:19,  2.01it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1551/1710 [13:32<01:31,  1.74it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1552/1710 [13:32<01:23,  1.90it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1553/1710 [13:33<01:15,  2.09it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1554/1710 [13:33<01:17,  2.00it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1555/1710 [13:34<01:16,  2.02it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1556/1710 [13:34<01:12,  2.13it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1557/1710 [13:34<01:10,  2.17it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1558/1710 [13:35<01:05,  2.31it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1559/1710 [13:35<01:05,  2.29it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1560/1710 [13:36<01:04,  2.34it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1561/1710 [13:36<01:03,  2.35it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1562/1710 [13:36<01:00,  2.44it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1563/1710 [13:37<00:58,  2.50it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1564/1710 [13:37<00:58,  2.52it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1565/1710 [13:38<00:59,  2.44it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1566/1710 [13:38<00:56,  2.55it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1567/1710 [13:39<01:06,  2.14it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1568/1710 [13:40<01:28,  1.60it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1569/1710 [13:40<01:26,  1.63it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1570/1710 [13:41<01:13,  1.90it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1571/1710 [13:41<01:04,  2.16it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1572/1710 [13:42<01:26,  1.60it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1573/1710 [13:42<01:13,  1.86it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1574/1710 [13:43<01:08,  1.99it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1575/1710 [13:43<01:04,  2.09it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1576/1710 [13:43<01:03,  2.13it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1577/1710 [13:44<00:57,  2.32it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1578/1710 [13:44<00:53,  2.45it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1579/1710 [13:45<00:55,  2.34it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1580/1710 [13:45<00:55,  2.33it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1581/1710 [13:45<00:55,  2.32it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1582/1710 [13:46<00:54,  2.36it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1583/1710 [13:46<00:54,  2.34it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1584/1710 [13:47<00:54,  2.33it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1585/1710 [13:47<01:01,  2.03it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1586/1710 [13:48<00:58,  2.12it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1587/1710 [13:48<00:54,  2.27it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1588/1710 [13:49<00:54,  2.25it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1589/1710 [13:49<01:01,  1.98it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1590/1710 [13:50<01:04,  1.86it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1591/1710 [13:50<01:02,  1.91it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1592/1710 [13:51<00:56,  2.11it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1593/1710 [13:51<00:53,  2.18it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1594/1710 [13:52<00:53,  2.18it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1595/1710 [13:52<01:02,  1.84it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1596/1710 [13:53<00:57,  1.99it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1597/1710 [13:53<00:54,  2.07it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1598/1710 [13:54<00:52,  2.13it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1599/1710 [13:54<00:49,  2.25it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1600/1710 [13:55<00:54,  2.03it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1601/1710 [13:55<00:59,  1.84it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1602/1710 [13:56<00:57,  1.87it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 1603/1710 [13:56<00:53,  2.00it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1604/1710 [13:57<00:50,  2.11it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1605/1710 [13:57<00:50,  2.07it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1606/1710 [13:58<00:48,  2.16it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1607/1710 [13:58<00:52,  1.97it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1608/1710 [13:59<00:52,  1.94it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1609/1710 [13:59<00:47,  2.13it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1610/1710 [14:00<00:50,  2.00it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1611/1710 [14:00<00:51,  1.93it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1612/1710 [14:01<00:46,  2.09it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1613/1710 [14:01<00:48,  2.01it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1614/1710 [14:02<00:46,  2.08it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1615/1710 [14:02<00:45,  2.08it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1616/1710 [14:02<00:42,  2.22it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1617/1710 [14:03<00:42,  2.19it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1618/1710 [14:03<00:42,  2.18it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1619/1710 [14:04<00:40,  2.22it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1620/1710 [14:04<00:41,  2.17it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1621/1710 [14:05<00:37,  2.39it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1622/1710 [14:05<00:36,  2.38it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1623/1710 [14:05<00:36,  2.36it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 1624/1710 [14:06<00:33,  2.53it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1625/1710 [14:06<00:33,  2.53it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1626/1710 [14:07<00:32,  2.60it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1627/1710 [14:07<00:35,  2.33it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1628/1710 [14:08<00:34,  2.36it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1629/1710 [14:08<00:33,  2.43it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1630/1710 [14:08<00:31,  2.54it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1631/1710 [14:09<00:32,  2.40it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1632/1710 [14:09<00:31,  2.46it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1633/1710 [14:10<00:33,  2.28it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1634/1710 [14:10<00:31,  2.38it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1635/1710 [14:11<00:33,  2.22it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1636/1710 [14:11<00:32,  2.26it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1637/1710 [14:11<00:31,  2.30it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1638/1710 [14:12<00:31,  2.30it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1639/1710 [14:12<00:29,  2.40it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1640/1710 [14:13<00:29,  2.38it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1641/1710 [14:13<00:29,  2.36it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1642/1710 [14:13<00:28,  2.38it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1643/1710 [14:14<00:29,  2.25it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1644/1710 [14:14<00:26,  2.47it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 1645/1710 [14:15<00:26,  2.49it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1646/1710 [14:15<00:25,  2.55it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1647/1710 [14:15<00:26,  2.41it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1648/1710 [14:16<00:26,  2.38it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1649/1710 [14:16<00:25,  2.39it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1650/1710 [14:17<00:25,  2.36it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1651/1710 [14:17<00:24,  2.40it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1652/1710 [14:18<00:24,  2.34it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1653/1710 [14:18<00:24,  2.30it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1654/1710 [14:18<00:24,  2.32it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1655/1710 [14:19<00:23,  2.33it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1656/1710 [14:19<00:24,  2.17it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1657/1710 [14:20<00:24,  2.16it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1658/1710 [14:20<00:23,  2.23it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1659/1710 [14:21<00:21,  2.36it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1660/1710 [14:21<00:22,  2.27it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1661/1710 [14:22<00:20,  2.36it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1662/1710 [14:22<00:21,  2.20it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1663/1710 [14:22<00:20,  2.34it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1664/1710 [14:23<00:19,  2.36it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1665/1710 [14:23<00:20,  2.17it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1666/1710 [14:24<00:18,  2.33it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 1667/1710 [14:24<00:18,  2.32it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1668/1710 [14:25<00:19,  2.15it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1669/1710 [14:25<00:17,  2.31it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1670/1710 [14:25<00:16,  2.40it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1671/1710 [14:26<00:17,  2.27it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1672/1710 [14:26<00:15,  2.41it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1673/1710 [14:27<00:14,  2.57it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1674/1710 [14:27<00:13,  2.68it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1675/1710 [14:27<00:14,  2.45it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1676/1710 [14:28<00:13,  2.54it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1677/1710 [14:29<00:16,  2.04it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1678/1710 [14:29<00:15,  2.06it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1679/1710 [14:29<00:14,  2.16it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1680/1710 [14:30<00:13,  2.24it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1681/1710 [14:30<00:12,  2.30it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1682/1710 [14:31<00:12,  2.25it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1683/1710 [14:31<00:11,  2.35it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1684/1710 [14:32<00:14,  1.86it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1685/1710 [14:32<00:13,  1.88it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1686/1710 [14:33<00:11,  2.01it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1687/1710 [14:33<00:12,  1.86it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 1688/1710 [14:34<00:10,  2.01it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1689/1710 [14:34<00:09,  2.12it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1690/1710 [14:35<00:09,  2.14it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1691/1710 [14:35<00:09,  2.02it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1692/1710 [14:36<00:08,  2.16it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1693/1710 [14:36<00:07,  2.18it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1694/1710 [14:37<00:07,  2.03it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1695/1710 [14:37<00:07,  1.89it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1696/1710 [14:38<00:06,  2.10it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1697/1710 [14:38<00:05,  2.26it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1698/1710 [14:39<00:05,  2.00it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1699/1710 [14:39<00:05,  2.06it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1700/1710 [14:40<00:04,  2.05it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1701/1710 [14:40<00:05,  1.71it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1702/1710 [14:41<00:04,  1.76it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1703/1710 [14:42<00:04,  1.70it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1704/1710 [14:42<00:03,  1.93it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1705/1710 [14:43<00:02,  1.80it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1706/1710 [14:43<00:02,  1.89it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1707/1710 [14:43<00:01,  2.08it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1708/1710 [14:44<00:00,  2.09it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 1709/1710 [14:45<00:00,  1.75it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1710/1710 [14:45<00:00,  1.94it/s][INFO|trainer.py:3503] 2024-09-09 12:29:41,232 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1710
[INFO|configuration_utils.py:472] 2024-09-09 12:29:41,233 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1710/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:29:42,287 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1710/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:29:42,288 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1710/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:29:42,289 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1710/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:29:47,798 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:29:47,799 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
[INFO|trainer.py:811] 2024-09-09 12:29:47,847 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:29:47,850 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:29:47,850 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:29:47,850 >>   Batch size = 8
{'eval_loss': 0.2917279005050659, 'eval_precision': 0.6458022851465475, 'eval_recall': 0.7115489874110563, 'eval_f1': 0.6770833333333333, 'eval_accuracy': 0.9466938304084186, 'eval_runtime': 5.9353, 'eval_samples_per_second': 424.408, 'eval_steps_per_second': 53.072, 'epoch': 9.0}


  0%|          | 0/315 [00:00<?, ?it/s]

  3%|β–Ž         | 8/315 [00:00<00:03, 78.48it/s]

  5%|β–Œ         | 16/315 [00:00<00:03, 75.15it/s]

  8%|β–Š         | 24/315 [00:00<00:03, 76.67it/s]

 10%|β–ˆ         | 32/315 [00:00<00:03, 72.34it/s]

 13%|β–ˆβ–Ž        | 41/315 [00:00<00:03, 75.90it/s]

 16%|β–ˆβ–Œ        | 49/315 [00:00<00:03, 74.64it/s]

 18%|β–ˆβ–Š        | 57/315 [00:00<00:03, 74.70it/s]

 21%|β–ˆβ–ˆ        | 65/315 [00:00<00:03, 71.45it/s]

 23%|β–ˆβ–ˆβ–Ž       | 73/315 [00:00<00:03, 73.28it/s]

 26%|β–ˆβ–ˆβ–Œ       | 81/315 [00:01<00:03, 69.66it/s]

 28%|β–ˆβ–ˆβ–Š       | 89/315 [00:01<00:03, 66.63it/s]

 31%|β–ˆβ–ˆβ–ˆ       | 97/315 [00:01<00:03, 66.80it/s]

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 104/315 [00:01<00:03, 67.55it/s]

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 112/315 [00:01<00:02, 70.16it/s]

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 120/315 [00:01<00:02, 69.45it/s]

 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 127/315 [00:01<00:02, 68.94it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 134/315 [00:01<00:02, 68.70it/s]

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 141/315 [00:01<00:02, 69.03it/s]

 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 149/315 [00:02<00:02, 71.83it/s]

 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 158/315 [00:02<00:02, 74.77it/s]

 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 166/315 [00:02<00:02, 71.53it/s]

 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 174/315 [00:02<00:01, 71.33it/s]

 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 182/315 [00:02<00:01, 68.58it/s]

 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 189/315 [00:02<00:01, 68.46it/s]

 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 196/315 [00:02<00:01, 67.83it/s]

 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 203/315 [00:02<00:01, 64.56it/s]

 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 210/315 [00:03<00:01, 63.19it/s]

 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 217/315 [00:03<00:01, 64.49it/s]

 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 225/315 [00:03<00:01, 67.99it/s]

 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 234/315 [00:03<00:01, 72.14it/s]

 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 242/315 [00:03<00:01, 70.05it/s]

 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 250/315 [00:03<00:00, 70.23it/s]

 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 258/315 [00:03<00:00, 68.35it/s]

 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 266/315 [00:03<00:00, 69.52it/s]

 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 274/315 [00:03<00:00, 72.33it/s]

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 283/315 [00:04<00:00, 74.24it/s]

 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 291/315 [00:04<00:00, 71.78it/s]

 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 299/315 [00:04<00:00, 70.81it/s]

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 307/315 [00:04<00:00, 71.90it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:04<00:00, 70.36it/s]
                                                   


                                                 

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1710/1710 [14:58<00:00,  1.94it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:05<00:00, 70.36it/s]

                                                 [INFO|trainer.py:3503] 2024-09-09 12:29:53,786 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1710
[INFO|configuration_utils.py:472] 2024-09-09 12:29:53,788 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1710/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:29:55,303 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1710/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:29:55,306 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1710/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:29:55,306 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1710/special_tokens_map.json
[INFO|trainer.py:2394] 2024-09-09 12:29:57,247 >> 

Training completed. Do not forget to share your model on huggingface.co/models =)


[INFO|trainer.py:2632] 2024-09-09 12:29:57,247 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-1368 (score: 0.680984808800419).

                                                   

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1710/1710 [15:01<00:00,  1.94it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1710/1710 [15:01<00:00,  1.90it/s]
[INFO|trainer.py:4283] 2024-09-09 12:29:57,436 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
[INFO|trainer.py:3503] 2024-09-09 12:30:42,660 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
[INFO|configuration_utils.py:472] 2024-09-09 12:30:42,661 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:30:44,034 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:30:44,035 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:30:44,035 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
[INFO|trainer.py:3503] 2024-09-09 12:30:44,082 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
[INFO|configuration_utils.py:472] 2024-09-09 12:30:44,083 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:30:47,113 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:30:47,114 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:30:47,114 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
{'eval_loss': 0.2930145561695099, 'eval_precision': 0.6548403446528129, 'eval_recall': 0.7071702244116037, 'eval_f1': 0.6799999999999999, 'eval_accuracy': 0.9481215310083737, 'eval_runtime': 5.9346, 'eval_samples_per_second': 424.463, 'eval_steps_per_second': 53.079, 'epoch': 10.0}
{'train_runtime': 901.7971, 'train_samples_per_second': 121.269, 'train_steps_per_second': 1.896, 'train_loss': 0.047100042948248794, 'epoch': 10.0}

events.out.tfevents.1725884095.0a1c9bec2a53.15221.0:   0%|          | 0.00/10.9k [00:00<?, ?B/s]
events.out.tfevents.1725884095.0a1c9bec2a53.15221.0: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 10.9k/10.9k [00:00<00:00, 33.7kB/s]
***** train metrics *****
  epoch                    =       10.0
  total_flos               =  4927248GF
  train_loss               =     0.0471
  train_runtime            = 0:15:01.79
  train_samples            =      10936
  train_samples_per_second =    121.269
  train_steps_per_second   =      1.896
09/09/2024 12:30:53 - INFO - __main__ -   *** Evaluate ***
[INFO|trainer.py:811] 2024-09-09 12:30:53,235 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:30:53,237 >> 
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:30:53,238 >>   Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:30:53,238 >>   Batch size = 8

  0%|          | 0/315 [00:00<?, ?it/s]
  3%|β–Ž         | 8/315 [00:00<00:03, 77.97it/s]
  5%|β–Œ         | 16/315 [00:00<00:04, 74.16it/s]
  8%|β–Š         | 24/315 [00:00<00:03, 75.60it/s]
 10%|β–ˆ         | 32/315 [00:00<00:03, 70.90it/s]
 13%|β–ˆβ–Ž        | 41/315 [00:00<00:03, 74.36it/s]
 16%|β–ˆβ–Œ        | 49/315 [00:00<00:03, 73.52it/s]
 18%|β–ˆβ–Š        | 57/315 [00:00<00:03, 73.54it/s]
 21%|β–ˆβ–ˆ        | 65/315 [00:00<00:03, 71.22it/s]
 23%|β–ˆβ–ˆβ–Ž       | 73/315 [00:00<00:03, 72.70it/s]
 26%|β–ˆβ–ˆβ–Œ       | 81/315 [00:01<00:03, 68.36it/s]
 28%|β–ˆβ–ˆβ–Š       | 88/315 [00:01<00:03, 66.29it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 96/315 [00:01<00:03, 69.40it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 103/315 [00:01<00:03, 66.83it/s]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 111/315 [00:01<00:02, 69.96it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 119/315 [00:01<00:02, 70.96it/s]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 127/315 [00:01<00:02, 69.01it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 134/315 [00:01<00:02, 68.00it/s]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 141/315 [00:02<00:02, 68.32it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 149/315 [00:02<00:02, 70.31it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 157/315 [00:02<00:02, 72.60it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 165/315 [00:02<00:02, 71.29it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 173/315 [00:02<00:02, 70.72it/s]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 181/315 [00:02<00:01, 68.66it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 188/315 [00:02<00:01, 68.89it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 195/315 [00:02<00:01, 66.91it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 202/315 [00:02<00:01, 65.15it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 209/315 [00:03<00:01, 65.07it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 217/315 [00:03<00:01, 67.82it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 225/315 [00:03<00:01, 70.30it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 233/315 [00:03<00:01, 72.81it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 241/315 [00:03<00:01, 70.62it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 249/315 [00:03<00:00, 69.72it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 257/315 [00:03<00:00, 67.63it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 265/315 [00:03<00:00, 69.05it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 274/315 [00:03<00:00, 72.50it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 282/315 [00:04<00:00, 74.49it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 290/315 [00:04<00:00, 70.74it/s]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 298/315 [00:04<00:00, 70.04it/s]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 306/315 [00:04<00:00, 71.93it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 314/315 [00:04<00:00, 69.90it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 315/315 [00:06<00:00, 51.18it/s]
***** eval metrics *****
  epoch                   =       10.0
  eval_accuracy           =     0.9473
  eval_f1                 =      0.681
  eval_loss               =     0.2808
  eval_precision          =     0.6529
  eval_recall             =     0.7115
  eval_runtime            = 0:00:06.16
  eval_samples            =       2519
  eval_samples_per_second =     408.28
  eval_steps_per_second   =     51.055
09/09/2024 12:30:59 - INFO - __main__ -   *** Predict ***
[INFO|trainer.py:811] 2024-09-09 12:30:59,410 >> The following columns in the test set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:30:59,412 >> 
***** Running Prediction *****
[INFO|trainer.py:3821] 2024-09-09 12:30:59,412 >>   Num examples = 4047
[INFO|trainer.py:3824] 2024-09-09 12:30:59,412 >>   Batch size = 8

  0%|          | 0/506 [00:00<?, ?it/s]
  2%|▏         | 9/506 [00:00<00:05, 89.20it/s]
  4%|β–Ž         | 18/506 [00:00<00:06, 76.66it/s]
  5%|β–Œ         | 26/506 [00:00<00:06, 76.81it/s]
  7%|β–‹         | 34/506 [00:00<00:06, 75.68it/s]
  8%|β–Š         | 42/506 [00:00<00:06, 73.46it/s]
 10%|β–‰         | 50/506 [00:00<00:06, 73.25it/s]
 11%|β–ˆβ–        | 58/506 [00:00<00:06, 73.76it/s]
 13%|β–ˆβ–Ž        | 66/506 [00:00<00:06, 70.93it/s]
 15%|β–ˆβ–        | 74/506 [00:01<00:06, 71.43it/s]
 16%|β–ˆβ–Œ        | 82/506 [00:01<00:06, 62.16it/s]
 18%|β–ˆβ–Š        | 89/506 [00:01<00:06, 62.05it/s]
 19%|β–ˆβ–‰        | 97/506 [00:01<00:06, 65.70it/s]
 21%|β–ˆβ–ˆ        | 105/506 [00:01<00:05, 68.07it/s]
 22%|β–ˆβ–ˆβ–       | 113/506 [00:01<00:05, 70.17it/s]
 24%|β–ˆβ–ˆβ–       | 121/506 [00:01<00:05, 69.38it/s]
 25%|β–ˆβ–ˆβ–Œ       | 129/506 [00:01<00:06, 59.19it/s]
 27%|β–ˆβ–ˆβ–‹       | 136/506 [00:02<00:06, 57.59it/s]
 28%|β–ˆβ–ˆβ–Š       | 144/506 [00:02<00:05, 61.37it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 152/506 [00:02<00:05, 64.13it/s]
 31%|β–ˆβ–ˆβ–ˆβ–      | 159/506 [00:02<00:05, 59.74it/s]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 166/506 [00:02<00:05, 60.44it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 173/506 [00:02<00:05, 62.40it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 180/506 [00:02<00:05, 64.04it/s]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 188/506 [00:02<00:04, 66.16it/s]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 195/506 [00:02<00:04, 66.21it/s]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 203/506 [00:03<00:04, 68.48it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 210/506 [00:03<00:04, 65.95it/s]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 217/506 [00:03<00:04, 66.63it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 224/506 [00:03<00:04, 61.58it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 231/506 [00:03<00:04, 63.12it/s]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 238/506 [00:03<00:04, 61.97it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 246/506 [00:03<00:03, 65.36it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 253/506 [00:03<00:03, 65.50it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 261/506 [00:03<00:03, 68.54it/s]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 269/506 [00:04<00:03, 71.13it/s]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 277/506 [00:04<00:03, 72.79it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 285/506 [00:04<00:03, 70.62it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 293/506 [00:04<00:02, 71.05it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 301/506 [00:04<00:02, 72.05it/s]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 309/506 [00:04<00:02, 72.62it/s]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 317/506 [00:04<00:02, 72.83it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 326/506 [00:04<00:02, 75.83it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 335/506 [00:04<00:02, 77.77it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 343/506 [00:05<00:02, 76.74it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 351/506 [00:05<00:02, 76.99it/s]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 359/506 [00:05<00:01, 76.22it/s]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 367/506 [00:05<00:01, 73.61it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 375/506 [00:05<00:01, 68.17it/s]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 382/506 [00:05<00:01, 67.51it/s]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 389/506 [00:05<00:01, 62.73it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 396/506 [00:05<00:01, 60.98it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 403/506 [00:05<00:01, 57.28it/s]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 410/506 [00:06<00:01, 59.54it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 417/506 [00:06<00:01, 61.06it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 424/506 [00:06<00:01, 61.58it/s]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 432/506 [00:06<00:01, 66.19it/s]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 439/506 [00:06<00:01, 66.57it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 446/506 [00:06<00:00, 65.56it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 454/506 [00:06<00:00, 67.26it/s]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 462/506 [00:06<00:00, 70.64it/s]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 470/506 [00:06<00:00, 71.31it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 478/506 [00:07<00:00, 72.28it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 486/506 [00:07<00:00, 70.00it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 494/506 [00:07<00:00, 69.30it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 502/506 [00:07<00:00, 71.07it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 506/506 [00:09<00:00, 51.46it/s]
[INFO|trainer.py:3503] 2024-09-09 12:31:09,424 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
[INFO|configuration_utils.py:472] 2024-09-09 12:31:09,425 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:31:10,791 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:31:10,792 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:31:10,793 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
***** predict metrics *****
  predict_accuracy           =     0.9476
  predict_f1                 =      0.691
  predict_loss               =     0.3017
  predict_precision          =     0.6776
  predict_recall             =     0.7049
  predict_runtime            = 0:00:09.84
  predict_samples_per_second =    410.896
  predict_steps_per_second   =     51.375

events.out.tfevents.1725885059.0a1c9bec2a53.15221.1:   0%|          | 0.00/560 [00:00<?, ?B/s]
events.out.tfevents.1725885059.0a1c9bec2a53.15221.1: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 560/560 [00:00<00:00, 1.97kB/s]