File size: 186,468 Bytes
08d4796 ddac389 35cc81e 99e540d 16af01a 18b86ce dc7fa04 0932943 c29c634 10f1a7c dc41cb8 4ee5e70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 |
2024-09-09 12:14:35.494661: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-09-09 12:14:35.513016: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-09-09 12:14:35.535014: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-09-09 12:14:35.541769: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-09-09 12:14:35.557993: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-09-09 12:14:36.793402: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead
warnings.warn(
09/09/2024 12:14:38 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
09/09/2024 12:14:38 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
_n_gpu=1,
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
batch_eval_metrics=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
dataloader_prefetch_factor=None,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=True,
do_predict=True,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_do_concat_batches=True,
eval_on_start=False,
eval_steps=None,
eval_strategy=epoch,
eval_use_gather_object=False,
evaluation_strategy=epoch,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=2,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=True,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=True,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/content/dissertation/scripts/ner/output/tb,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=f1,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=10.0,
optim=adamw_torch,
optim_args=None,
optim_target_modules=None,
output_dir=/content/dissertation/scripts/ner/output,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=32,
prediction_loss_only=False,
push_to_hub=True,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
restore_callback_states_from_checkpoint=False,
resume_from_checkpoint=None,
run_name=/content/dissertation/scripts/ner/output,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=epoch,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
split_batches=None,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torch_empty_cache_steps=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
Downloading builder script: 0%| | 0.00/3.92k [00:00<?, ?B/s]
Downloading builder script: 100%|ββββββββββ| 3.92k/3.92k [00:00<00:00, 16.0kB/s]
Downloading builder script: 100%|ββββββββββ| 3.92k/3.92k [00:00<00:00, 16.0kB/s]
Downloading data: 0%| | 0.00/13.7M [00:00<?, ?B/s]
Downloading data: 77%|ββββββββ | 10.5M/13.7M [00:00<00:00, 10.6MB/s]
Downloading data: 100%|ββββββββββ| 13.7M/13.7M [00:01<00:00, 11.9MB/s]
Downloading data: 100%|ββββββββββ| 13.7M/13.7M [00:01<00:00, 11.6MB/s]
Downloading data: 0%| | 0.00/2.93M [00:00<?, ?B/s]
Downloading data: 100%|ββββββββββ| 2.93M/2.93M [00:00<00:00, 4.24MB/s]
Downloading data: 100%|ββββββββββ| 2.93M/2.93M [00:00<00:00, 4.22MB/s]
Downloading data: 0%| | 0.00/4.78M [00:00<?, ?B/s]
Downloading data: 100%|ββββββββββ| 4.78M/4.78M [00:00<00:00, 5.09MB/s]
Downloading data: 100%|ββββββββββ| 4.78M/4.78M [00:00<00:00, 5.06MB/s]
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 560 examples [00:00, 5579.69 examples/s]
Generating train split: 1362 examples [00:00, 5414.73 examples/s]
Generating train split: 1937 examples [00:00, 5541.43 examples/s]
Generating train split: 2738 examples [00:00, 5446.93 examples/s]
Generating train split: 3592 examples [00:00, 5464.58 examples/s]
Generating train split: 4404 examples [00:00, 5442.51 examples/s]
Generating train split: 4974 examples [00:00, 5505.21 examples/s]
Generating train split: 5832 examples [00:01, 5579.00 examples/s]
Generating train split: 6663 examples [00:01, 5563.41 examples/s]
Generating train split: 7496 examples [00:01, 5556.89 examples/s]
Generating train split: 8300 examples [00:01, 5487.46 examples/s]
Generating train split: 8913 examples [00:01, 5633.76 examples/s]
Generating train split: 9706 examples [00:01, 5515.35 examples/s]
Generating train split: 10294 examples [00:01, 5512.88 examples/s]
Generating train split: 10885 examples [00:01, 5612.39 examples/s]
Generating train split: 10936 examples [00:01, 5509.85 examples/s]
Generating validation split: 0 examples [00:00, ? examples/s]
Generating validation split: 652 examples [00:00, 6495.55 examples/s]
Generating validation split: 1504 examples [00:00, 5932.88 examples/s]
Generating validation split: 2343 examples [00:00, 5760.31 examples/s]
Generating validation split: 2519 examples [00:00, 5753.19 examples/s]
Generating test split: 0 examples [00:00, ? examples/s]
Generating test split: 635 examples [00:00, 6320.94 examples/s]
Generating test split: 1483 examples [00:00, 5864.12 examples/s]
Generating test split: 2322 examples [00:00, 5720.53 examples/s]
Generating test split: 2953 examples [00:00, 5902.47 examples/s]
Generating test split: 3809 examples [00:00, 5809.22 examples/s]
Generating test split: 4047 examples [00:00, 5752.07 examples/s]
[INFO|configuration_utils.py:733] 2024-09-09 12:14:50,533 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-09-09 12:14:50,537 >> Model config RobertaConfig {
"_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
"architectures": [
"RobertaForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"bos_token_id": 0,
"classifier_dropout": null,
"eos_token_id": 2,
"finetuning_task": "ner",
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "O",
"1": "B-SINTOMA",
"2": "I-SINTOMA"
},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"B-SINTOMA": 1,
"I-SINTOMA": 2,
"O": 0
},
"layer_norm_eps": 1e-05,
"max_position_embeddings": 514,
"model_type": "roberta",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"position_embedding_type": "absolute",
"transformers_version": "4.44.2",
"type_vocab_size": 1,
"use_cache": true,
"vocab_size": 50262
}
[INFO|configuration_utils.py:733] 2024-09-09 12:14:50,787 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-09-09 12:14:50,788 >> Model config RobertaConfig {
"_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
"architectures": [
"RobertaForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"bos_token_id": 0,
"classifier_dropout": null,
"eos_token_id": 2,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 514,
"model_type": "roberta",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"position_embedding_type": "absolute",
"transformers_version": "4.44.2",
"type_vocab_size": 1,
"use_cache": true,
"vocab_size": 50262
}
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,800 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/vocab.json
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/merges.txt
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file tokenizer.json from cache at None
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file added_tokens.json from cache at None
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/special_tokens_map.json
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/tokenizer_config.json
[INFO|configuration_utils.py:733] 2024-09-09 12:14:50,801 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-09-09 12:14:50,802 >> Model config RobertaConfig {
"_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
"architectures": [
"RobertaForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"bos_token_id": 0,
"classifier_dropout": null,
"eos_token_id": 2,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 514,
"model_type": "roberta",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"position_embedding_type": "absolute",
"transformers_version": "4.44.2",
"type_vocab_size": 1,
"use_cache": true,
"vocab_size": 50262
}
/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
warnings.warn(
[INFO|configuration_utils.py:733] 2024-09-09 12:14:50,882 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-09-09 12:14:50,883 >> Model config RobertaConfig {
"_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
"architectures": [
"RobertaForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"bos_token_id": 0,
"classifier_dropout": null,
"eos_token_id": 2,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 514,
"model_type": "roberta",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"position_embedding_type": "absolute",
"transformers_version": "4.44.2",
"type_vocab_size": 1,
"use_cache": true,
"vocab_size": 50262
}
[INFO|modeling_utils.py:3678] 2024-09-09 12:14:51,213 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/pytorch_model.bin
[INFO|modeling_utils.py:4497] 2024-09-09 12:14:51,293 >> Some weights of the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es were not used when initializing RobertaForTokenClassification: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.decoder.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']
- This IS expected if you are initializing RobertaForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
[WARNING|modeling_utils.py:4509] 2024-09-09 12:14:51,293 >> Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Map: 0%| | 0/10936 [00:00<?, ? examples/s]
Map: 9%|β | 1000/10936 [00:00<00:03, 3028.63 examples/s]
Map: 18%|ββ | 2000/10936 [00:00<00:01, 5033.04 examples/s]
Map: 27%|βββ | 3000/10936 [00:00<00:01, 6438.12 examples/s]
Map: 37%|ββββ | 4000/10936 [00:00<00:00, 7461.99 examples/s]
Map: 46%|βββββ | 5000/10936 [00:00<00:00, 8144.27 examples/s]
Map: 64%|βββββββ | 7000/10936 [00:00<00:00, 9096.05 examples/s]
Map: 73%|ββββββββ | 8000/10936 [00:01<00:00, 9263.87 examples/s]
Map: 91%|ββββββββββ| 10000/10936 [00:01<00:00, 9598.21 examples/s]
Map: 100%|ββββββββββ| 10936/10936 [00:01<00:00, 8157.31 examples/s]
Map: 0%| | 0/2519 [00:00<?, ? examples/s]
Map: 79%|ββββββββ | 2000/2519 [00:00<00:00, 10345.28 examples/s]
Map: 100%|ββββββββββ| 2519/2519 [00:00<00:00, 10154.28 examples/s]
Map: 0%| | 0/4047 [00:00<?, ? examples/s]
Map: 49%|βββββ | 2000/4047 [00:00<00:00, 10228.61 examples/s]
Map: 99%|ββββββββββ| 4000/4047 [00:00<00:00, 10327.08 examples/s]
Map: 100%|ββββββββββ| 4047/4047 [00:00<00:00, 10160.37 examples/s]
/content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library π€ Evaluate: https://huggingface.co/docs/evaluate
metric = load_metric("seqeval", trust_remote_code=True)
[INFO|trainer.py:811] 2024-09-09 12:14:55,082 >> The following columns in the training set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:2134] 2024-09-09 12:14:55,636 >> ***** Running training *****
[INFO|trainer.py:2135] 2024-09-09 12:14:55,636 >> Num examples = 10,936
[INFO|trainer.py:2136] 2024-09-09 12:14:55,636 >> Num Epochs = 10
[INFO|trainer.py:2137] 2024-09-09 12:14:55,636 >> Instantaneous batch size per device = 32
[INFO|trainer.py:2140] 2024-09-09 12:14:55,636 >> Total train batch size (w. parallel, distributed & accumulation) = 64
[INFO|trainer.py:2141] 2024-09-09 12:14:55,636 >> Gradient Accumulation steps = 2
[INFO|trainer.py:2142] 2024-09-09 12:14:55,636 >> Total optimization steps = 1,710
[INFO|trainer.py:2143] 2024-09-09 12:14:55,637 >> Number of trainable parameters = 124,055,043
0%| | 0/1710 [00:00<?, ?it/s]
0%| | 1/1710 [00:01<32:09, 1.13s/it]
0%| | 2/1710 [00:01<19:10, 1.48it/s]
0%| | 3/1710 [00:01<16:10, 1.76it/s]
0%| | 4/1710 [00:02<14:04, 2.02it/s]
0%| | 5/1710 [00:02<13:32, 2.10it/s]
0%| | 6/1710 [00:03<14:07, 2.01it/s]
0%| | 7/1710 [00:03<12:53, 2.20it/s]
0%| | 8/1710 [00:04<12:12, 2.32it/s]
1%| | 9/1710 [00:04<12:30, 2.27it/s]
1%| | 10/1710 [00:04<11:41, 2.42it/s]
1%| | 11/1710 [00:05<12:06, 2.34it/s]
1%| | 12/1710 [00:05<13:56, 2.03it/s]
1%| | 13/1710 [00:06<14:13, 1.99it/s]
1%| | 14/1710 [00:06<14:10, 2.00it/s]
1%| | 15/1710 [00:07<14:07, 2.00it/s]
1%| | 16/1710 [00:08<15:00, 1.88it/s]
1%| | 17/1710 [00:08<13:46, 2.05it/s]
1%| | 18/1710 [00:08<13:39, 2.06it/s]
1%| | 19/1710 [00:09<12:48, 2.20it/s]
1%| | 20/1710 [00:09<12:31, 2.25it/s]
1%| | 21/1710 [00:10<12:28, 2.26it/s]
1%|β | 22/1710 [00:10<14:21, 1.96it/s]
1%|β | 23/1710 [00:11<14:32, 1.93it/s]
1%|β | 24/1710 [00:11<13:26, 2.09it/s]
1%|β | 25/1710 [00:12<14:27, 1.94it/s]
2%|β | 26/1710 [00:12<13:07, 2.14it/s]
2%|β | 27/1710 [00:13<14:22, 1.95it/s]
2%|β | 28/1710 [00:13<13:51, 2.02it/s]
2%|β | 29/1710 [00:14<14:49, 1.89it/s]
2%|β | 30/1710 [00:14<13:40, 2.05it/s]
2%|β | 31/1710 [00:15<13:01, 2.15it/s]
2%|β | 32/1710 [00:15<14:15, 1.96it/s]
2%|β | 33/1710 [00:16<18:22, 1.52it/s]
2%|β | 34/1710 [00:17<18:55, 1.48it/s]
2%|β | 35/1710 [00:17<16:24, 1.70it/s]
2%|β | 36/1710 [00:18<14:21, 1.94it/s]
2%|β | 37/1710 [00:19<17:15, 1.62it/s]
2%|β | 38/1710 [00:19<15:50, 1.76it/s]
2%|β | 39/1710 [00:19<14:13, 1.96it/s]
2%|β | 40/1710 [00:20<14:20, 1.94it/s]
2%|β | 41/1710 [00:20<13:25, 2.07it/s]
2%|β | 42/1710 [00:21<14:16, 1.95it/s]
3%|β | 43/1710 [00:21<14:07, 1.97it/s]
3%|β | 44/1710 [00:22<13:33, 2.05it/s]
3%|β | 45/1710 [00:22<12:56, 2.14it/s]
3%|β | 46/1710 [00:23<12:49, 2.16it/s]
3%|β | 47/1710 [00:23<12:51, 2.16it/s]
3%|β | 48/1710 [00:24<12:06, 2.29it/s]
3%|β | 49/1710 [00:24<15:02, 1.84it/s]
3%|β | 50/1710 [00:25<14:06, 1.96it/s]
3%|β | 51/1710 [00:25<13:11, 2.10it/s]
3%|β | 52/1710 [00:26<12:45, 2.17it/s]
3%|β | 53/1710 [00:26<12:22, 2.23it/s]
3%|β | 54/1710 [00:27<12:33, 2.20it/s]
3%|β | 55/1710 [00:27<15:05, 1.83it/s]
3%|β | 56/1710 [00:28<13:50, 1.99it/s]
3%|β | 57/1710 [00:28<13:48, 2.00it/s]
3%|β | 58/1710 [00:29<12:17, 2.24it/s]
3%|β | 59/1710 [00:29<11:30, 2.39it/s]
4%|β | 60/1710 [00:29<11:26, 2.40it/s]
4%|β | 61/1710 [00:30<12:02, 2.28it/s]
4%|β | 62/1710 [00:31<14:35, 1.88it/s]
4%|β | 63/1710 [00:31<13:25, 2.05it/s]
4%|β | 64/1710 [00:31<12:02, 2.28it/s]
4%|β | 65/1710 [00:32<12:17, 2.23it/s]
4%|β | 66/1710 [00:32<11:20, 2.42it/s]
4%|β | 67/1710 [00:33<12:26, 2.20it/s]
4%|β | 68/1710 [00:33<12:17, 2.23it/s]
4%|β | 69/1710 [00:33<12:09, 2.25it/s]
4%|β | 70/1710 [00:34<12:14, 2.23it/s]
4%|β | 71/1710 [00:34<11:59, 2.28it/s]
4%|β | 72/1710 [00:35<12:12, 2.24it/s]
4%|β | 73/1710 [00:35<11:23, 2.40it/s]
4%|β | 74/1710 [00:36<11:55, 2.29it/s]
4%|β | 75/1710 [00:36<11:33, 2.36it/s]
4%|β | 76/1710 [00:37<13:03, 2.09it/s]
5%|β | 77/1710 [00:37<13:12, 2.06it/s]
5%|β | 78/1710 [00:38<14:10, 1.92it/s]
5%|β | 79/1710 [00:38<14:31, 1.87it/s]
5%|β | 80/1710 [00:39<13:57, 1.95it/s]
5%|β | 81/1710 [00:39<13:52, 1.96it/s]
5%|β | 82/1710 [00:40<12:48, 2.12it/s]
5%|β | 83/1710 [00:40<14:18, 1.90it/s]
5%|β | 84/1710 [00:41<13:36, 1.99it/s]
5%|β | 85/1710 [00:41<12:53, 2.10it/s]
5%|β | 86/1710 [00:42<12:27, 2.17it/s]
5%|β | 87/1710 [00:42<12:30, 2.16it/s]
5%|β | 88/1710 [00:43<12:09, 2.22it/s]
5%|β | 89/1710 [00:43<12:54, 2.09it/s]
5%|β | 90/1710 [00:43<12:16, 2.20it/s]
5%|β | 91/1710 [00:44<12:47, 2.11it/s]
5%|β | 92/1710 [00:44<12:29, 2.16it/s]
5%|β | 93/1710 [00:45<12:22, 2.18it/s]
5%|β | 94/1710 [00:45<12:03, 2.23it/s]
6%|β | 95/1710 [00:46<12:00, 2.24it/s]
6%|β | 96/1710 [00:46<13:09, 2.05it/s]
6%|β | 97/1710 [00:47<12:05, 2.22it/s]
6%|β | 98/1710 [00:47<11:19, 2.37it/s]
6%|β | 99/1710 [00:47<10:59, 2.44it/s]
6%|β | 100/1710 [00:48<11:51, 2.26it/s]
6%|β | 101/1710 [00:48<11:43, 2.29it/s]
6%|β | 102/1710 [00:49<11:46, 2.28it/s]
6%|β | 103/1710 [00:49<11:30, 2.33it/s]
6%|β | 104/1710 [00:50<12:02, 2.22it/s]
6%|β | 105/1710 [00:50<11:09, 2.40it/s]
6%|β | 106/1710 [00:50<11:00, 2.43it/s]
6%|β | 107/1710 [00:51<11:12, 2.38it/s]
6%|β | 108/1710 [00:51<10:58, 2.43it/s]
6%|β | 109/1710 [00:52<10:58, 2.43it/s]
6%|β | 110/1710 [00:52<11:53, 2.24it/s]
6%|β | 111/1710 [00:53<11:47, 2.26it/s]
7%|β | 112/1710 [00:53<11:39, 2.29it/s]
7%|β | 113/1710 [00:53<11:16, 2.36it/s]
7%|β | 114/1710 [00:54<11:12, 2.37it/s]
7%|β | 115/1710 [00:54<10:35, 2.51it/s]
7%|β | 116/1710 [00:55<11:13, 2.37it/s]
7%|β | 117/1710 [00:55<11:17, 2.35it/s]
7%|β | 118/1710 [00:56<14:58, 1.77it/s]
7%|β | 119/1710 [00:56<14:07, 1.88it/s]
7%|β | 120/1710 [00:57<13:45, 1.93it/s]
7%|β | 121/1710 [00:57<12:26, 2.13it/s]
7%|β | 122/1710 [00:58<11:56, 2.22it/s]
7%|β | 123/1710 [00:58<11:05, 2.39it/s]
7%|β | 124/1710 [00:58<10:58, 2.41it/s]
7%|β | 125/1710 [00:59<10:03, 2.63it/s]
7%|β | 126/1710 [00:59<10:30, 2.51it/s]
7%|β | 127/1710 [01:00<10:41, 2.47it/s]
7%|β | 128/1710 [01:00<10:48, 2.44it/s]
8%|β | 129/1710 [01:00<10:51, 2.42it/s]
8%|β | 130/1710 [01:01<11:48, 2.23it/s]
8%|β | 131/1710 [01:01<11:11, 2.35it/s]
8%|β | 132/1710 [01:02<11:31, 2.28it/s]
8%|β | 133/1710 [01:02<11:40, 2.25it/s]
8%|β | 134/1710 [01:03<10:50, 2.42it/s]
8%|β | 135/1710 [01:03<10:17, 2.55it/s]
8%|β | 136/1710 [01:03<10:39, 2.46it/s]
8%|β | 137/1710 [01:04<11:22, 2.30it/s]
8%|β | 138/1710 [01:04<11:21, 2.31it/s]
8%|β | 139/1710 [01:05<11:55, 2.20it/s]
8%|β | 140/1710 [01:06<14:01, 1.87it/s]
8%|β | 141/1710 [01:06<12:55, 2.02it/s]
8%|β | 142/1710 [01:07<13:39, 1.91it/s]
8%|β | 143/1710 [01:07<12:42, 2.06it/s]
8%|β | 144/1710 [01:07<11:24, 2.29it/s]
8%|β | 145/1710 [01:08<11:51, 2.20it/s]
9%|β | 146/1710 [01:08<12:38, 2.06it/s]
9%|β | 147/1710 [01:09<12:53, 2.02it/s]
9%|β | 148/1710 [01:09<11:37, 2.24it/s]
9%|β | 149/1710 [01:10<13:00, 2.00it/s]
9%|β | 150/1710 [01:10<13:03, 1.99it/s]
9%|β | 151/1710 [01:11<12:32, 2.07it/s]
9%|β | 152/1710 [01:11<12:23, 2.10it/s]
9%|β | 153/1710 [01:12<11:41, 2.22it/s]
9%|β | 154/1710 [01:12<11:02, 2.35it/s]
9%|β | 155/1710 [01:12<10:28, 2.48it/s]
9%|β | 156/1710 [01:13<11:00, 2.35it/s]
9%|β | 157/1710 [01:13<10:35, 2.44it/s]
9%|β | 158/1710 [01:14<10:03, 2.57it/s]
9%|β | 159/1710 [01:14<10:55, 2.37it/s]
9%|β | 160/1710 [01:14<11:03, 2.34it/s]
9%|β | 161/1710 [01:15<10:27, 2.47it/s]
9%|β | 162/1710 [01:15<10:53, 2.37it/s]
10%|β | 163/1710 [01:16<11:08, 2.31it/s]
10%|β | 164/1710 [01:16<10:45, 2.39it/s]
10%|β | 165/1710 [01:17<11:08, 2.31it/s]
10%|β | 166/1710 [01:17<12:47, 2.01it/s]
10%|β | 167/1710 [01:18<11:48, 2.18it/s]
10%|β | 168/1710 [01:18<11:28, 2.24it/s]
10%|β | 169/1710 [01:19<12:21, 2.08it/s]
10%|β | 170/1710 [01:19<11:20, 2.26it/s]
10%|β | 171/1710 [01:19<11:08, 2.30it/s][INFO|trainer.py:811] 2024-09-09 12:16:15,508 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:16:15,510 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:16:15,510 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:16:15,510 >> Batch size = 8
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:04, 74.15it/s][A
5%|β | 16/315 [00:00<00:04, 72.87it/s][A
8%|β | 24/315 [00:00<00:03, 74.59it/s][A
10%|β | 32/315 [00:00<00:04, 70.63it/s][A
13%|ββ | 40/315 [00:00<00:03, 71.80it/s][A
15%|ββ | 48/315 [00:00<00:03, 72.49it/s][A
18%|ββ | 56/315 [00:00<00:03, 72.18it/s][A
20%|ββ | 64/315 [00:00<00:03, 70.11it/s][A
23%|βββ | 72/315 [00:00<00:03, 72.26it/s][A
25%|βββ | 80/315 [00:01<00:03, 68.95it/s][A
28%|βββ | 87/315 [00:01<00:03, 67.94it/s][A
30%|βββ | 95/315 [00:01<00:03, 69.32it/s][A
32%|ββββ | 102/315 [00:01<00:03, 65.97it/s][A
35%|ββββ | 110/315 [00:01<00:02, 68.77it/s][A
37%|ββββ | 118/315 [00:01<00:02, 70.24it/s][A
40%|ββββ | 126/315 [00:01<00:02, 67.00it/s][A
43%|βββββ | 134/315 [00:01<00:02, 67.51it/s][A
45%|βββββ | 141/315 [00:02<00:02, 68.03it/s][A
47%|βββββ | 149/315 [00:02<00:02, 70.61it/s][A
50%|βββββ | 157/315 [00:02<00:02, 72.86it/s][A
52%|ββββββ | 165/315 [00:02<00:02, 71.30it/s][A
55%|ββββββ | 173/315 [00:02<00:02, 70.07it/s][A
57%|ββββββ | 181/315 [00:02<00:01, 67.81it/s][A
60%|ββββββ | 189/315 [00:02<00:01, 68.05it/s][A
62%|βββββββ | 196/315 [00:02<00:01, 67.00it/s][A
64%|βββββββ | 203/315 [00:02<00:01, 64.45it/s][A
67%|βββββββ | 210/315 [00:03<00:01, 65.01it/s][A
69%|βββββββ | 218/315 [00:03<00:01, 68.74it/s][A
72%|ββββββββ | 226/315 [00:03<00:01, 71.36it/s][A
75%|ββββββββ | 235/315 [00:03<00:01, 74.60it/s][A
77%|ββββββββ | 243/315 [00:03<00:01, 70.81it/s][A
80%|ββββββββ | 251/315 [00:03<00:00, 70.96it/s][A
82%|βββββββββ | 259/315 [00:03<00:00, 68.92it/s][A
85%|βββββββββ | 267/315 [00:03<00:00, 70.16it/s][A
88%|βββββββββ | 276/315 [00:03<00:00, 73.45it/s][A
90%|βββββββββ | 284/315 [00:04<00:00, 73.52it/s][A
93%|ββββββββββ| 292/315 [00:04<00:00, 71.60it/s][A
95%|ββββββββββ| 300/315 [00:04<00:00, 71.31it/s][A
98%|ββββββββββ| 308/315 [00:04<00:00, 71.30it/s][A
[A
10%|β | 171/1710 [01:25<11:08, 2.30it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 71.30it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:16:21,499 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-171
[INFO|configuration_utils.py:472] 2024-09-09 12:16:21,501 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-171/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:16:22,527 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-171/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:16:22,528 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-171/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:16:22,529 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-171/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:16:25,565 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:16:25,565 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
10%|β | 172/1710 [01:30<1:27:43, 3.42s/it]
10%|β | 173/1710 [01:30<1:05:49, 2.57s/it]
10%|β | 174/1710 [01:31<49:01, 1.92s/it]
10%|β | 175/1710 [01:31<37:24, 1.46s/it]
10%|β | 176/1710 [01:32<29:43, 1.16s/it]
10%|β | 177/1710 [01:32<23:13, 1.10it/s]
10%|β | 178/1710 [01:32<19:22, 1.32it/s]
10%|β | 179/1710 [01:33<16:39, 1.53it/s]
11%|β | 180/1710 [01:33<14:52, 1.71it/s]
11%|β | 181/1710 [01:34<13:53, 1.84it/s]
11%|β | 182/1710 [01:34<13:02, 1.95it/s]
11%|β | 183/1710 [01:34<12:03, 2.11it/s]
11%|β | 184/1710 [01:35<11:05, 2.29it/s]
11%|β | 185/1710 [01:35<11:05, 2.29it/s]
11%|β | 186/1710 [01:36<10:52, 2.33it/s]
11%|β | 187/1710 [01:36<10:16, 2.47it/s]
11%|β | 188/1710 [01:37<11:20, 2.24it/s]
11%|β | 189/1710 [01:37<10:06, 2.51it/s]
11%|β | 190/1710 [01:37<10:00, 2.53it/s]
11%|β | 191/1710 [01:38<10:40, 2.37it/s]
11%|β | 192/1710 [01:38<13:43, 1.84it/s]
11%|ββ | 193/1710 [01:39<13:01, 1.94it/s]
11%|ββ | 194/1710 [01:40<14:45, 1.71it/s]
11%|ββ | 195/1710 [01:40<13:18, 1.90it/s]
11%|ββ | 196/1710 [01:41<12:48, 1.97it/s]
12%|ββ | 197/1710 [01:41<11:50, 2.13it/s]
12%|ββ | 198/1710 [01:41<12:19, 2.05it/s]
12%|ββ | 199/1710 [01:42<11:26, 2.20it/s]
12%|ββ | 200/1710 [01:42<11:07, 2.26it/s]
12%|ββ | 201/1710 [01:43<11:23, 2.21it/s]
12%|ββ | 202/1710 [01:43<11:44, 2.14it/s]
12%|ββ | 203/1710 [01:44<11:12, 2.24it/s]
12%|ββ | 204/1710 [01:44<11:04, 2.27it/s]
12%|ββ | 205/1710 [01:44<10:26, 2.40it/s]
12%|ββ | 206/1710 [01:45<10:31, 2.38it/s]
12%|ββ | 207/1710 [01:45<10:37, 2.36it/s]
12%|ββ | 208/1710 [01:46<10:40, 2.35it/s]
12%|ββ | 209/1710 [01:46<10:26, 2.40it/s]
12%|ββ | 210/1710 [01:47<10:21, 2.41it/s]
12%|ββ | 211/1710 [01:47<13:31, 1.85it/s]
12%|ββ | 212/1710 [01:48<12:25, 2.01it/s]
12%|ββ | 213/1710 [01:48<11:29, 2.17it/s]
13%|ββ | 214/1710 [01:48<10:48, 2.31it/s]
13%|ββ | 215/1710 [01:49<11:08, 2.24it/s]
13%|ββ | 216/1710 [01:49<11:34, 2.15it/s]
13%|ββ | 217/1710 [01:50<10:57, 2.27it/s]
13%|ββ | 218/1710 [01:50<11:25, 2.18it/s]
13%|ββ | 219/1710 [01:51<10:37, 2.34it/s]
13%|ββ | 220/1710 [01:51<10:59, 2.26it/s]
13%|ββ | 221/1710 [01:52<11:41, 2.12it/s]
13%|ββ | 222/1710 [01:52<11:35, 2.14it/s]
13%|ββ | 223/1710 [01:53<10:35, 2.34it/s]
13%|ββ | 224/1710 [01:53<10:22, 2.39it/s]
13%|ββ | 225/1710 [01:53<11:22, 2.18it/s]
13%|ββ | 226/1710 [01:54<10:48, 2.29it/s]
13%|ββ | 227/1710 [01:55<15:06, 1.64it/s]
13%|ββ | 228/1710 [01:55<15:03, 1.64it/s]
13%|ββ | 229/1710 [01:56<13:49, 1.79it/s]
13%|ββ | 230/1710 [01:56<13:40, 1.80it/s]
14%|ββ | 231/1710 [01:57<12:47, 1.93it/s]
14%|ββ | 232/1710 [01:57<11:18, 2.18it/s]
14%|ββ | 233/1710 [01:58<11:45, 2.09it/s]
14%|ββ | 234/1710 [01:58<11:04, 2.22it/s]
14%|ββ | 235/1710 [01:58<10:23, 2.37it/s]
14%|ββ | 236/1710 [01:59<10:08, 2.42it/s]
14%|ββ | 237/1710 [01:59<11:05, 2.21it/s]
14%|ββ | 238/1710 [02:00<13:19, 1.84it/s]
14%|ββ | 239/1710 [02:01<12:42, 1.93it/s]
14%|ββ | 240/1710 [02:01<11:38, 2.10it/s]
14%|ββ | 241/1710 [02:01<10:37, 2.30it/s]
14%|ββ | 242/1710 [02:02<10:17, 2.38it/s]
14%|ββ | 243/1710 [02:02<10:50, 2.25it/s]
14%|ββ | 244/1710 [02:03<10:29, 2.33it/s]
14%|ββ | 245/1710 [02:03<10:30, 2.32it/s]
14%|ββ | 246/1710 [02:04<11:29, 2.12it/s]
14%|ββ | 247/1710 [02:04<11:58, 2.04it/s]
15%|ββ | 248/1710 [02:05<11:34, 2.10it/s]
15%|ββ | 249/1710 [02:05<10:23, 2.34it/s]
15%|ββ | 250/1710 [02:05<10:26, 2.33it/s]
15%|ββ | 251/1710 [02:06<10:35, 2.30it/s]
15%|ββ | 252/1710 [02:06<10:23, 2.34it/s]
15%|ββ | 253/1710 [02:07<10:17, 2.36it/s]
15%|ββ | 254/1710 [02:07<12:00, 2.02it/s]
15%|ββ | 255/1710 [02:08<11:09, 2.17it/s]
15%|ββ | 256/1710 [02:08<11:16, 2.15it/s]
15%|ββ | 257/1710 [02:09<11:21, 2.13it/s]
15%|ββ | 258/1710 [02:09<10:36, 2.28it/s]
15%|ββ | 259/1710 [02:09<10:12, 2.37it/s]
15%|ββ | 260/1710 [02:10<10:50, 2.23it/s]
15%|ββ | 261/1710 [02:10<11:02, 2.19it/s]
15%|ββ | 262/1710 [02:11<11:02, 2.18it/s]
15%|ββ | 263/1710 [02:11<10:14, 2.35it/s]
15%|ββ | 264/1710 [02:12<11:19, 2.13it/s]
15%|ββ | 265/1710 [02:12<13:03, 1.84it/s]
16%|ββ | 266/1710 [02:13<11:58, 2.01it/s]
16%|ββ | 267/1710 [02:13<11:15, 2.14it/s]
16%|ββ | 268/1710 [02:14<11:35, 2.07it/s]
16%|ββ | 269/1710 [02:14<11:31, 2.08it/s]
16%|ββ | 270/1710 [02:15<11:24, 2.11it/s]
16%|ββ | 271/1710 [02:15<11:16, 2.13it/s]
16%|ββ | 272/1710 [02:16<11:15, 2.13it/s]
16%|ββ | 273/1710 [02:16<11:04, 2.16it/s]
16%|ββ | 274/1710 [02:17<12:48, 1.87it/s]
16%|ββ | 275/1710 [02:17<11:30, 2.08it/s]
16%|ββ | 276/1710 [02:17<10:30, 2.28it/s]
16%|ββ | 277/1710 [02:18<10:22, 2.30it/s]
16%|ββ | 278/1710 [02:18<10:22, 2.30it/s]
16%|ββ | 279/1710 [02:19<10:49, 2.20it/s]
16%|ββ | 280/1710 [02:20<12:41, 1.88it/s]
16%|ββ | 281/1710 [02:20<12:01, 1.98it/s]
16%|ββ | 282/1710 [02:21<12:14, 1.94it/s]
17%|ββ | 283/1710 [02:21<10:55, 2.18it/s]
17%|ββ | 284/1710 [02:21<10:41, 2.22it/s]
17%|ββ | 285/1710 [02:22<10:13, 2.32it/s]
17%|ββ | 286/1710 [02:22<10:22, 2.29it/s]
17%|ββ | 287/1710 [02:23<10:45, 2.20it/s]
17%|ββ | 288/1710 [02:23<10:03, 2.36it/s]
17%|ββ | 289/1710 [02:23<09:55, 2.39it/s]
17%|ββ | 290/1710 [02:24<10:40, 2.22it/s]
17%|ββ | 291/1710 [02:24<10:06, 2.34it/s]
17%|ββ | 292/1710 [02:25<09:28, 2.49it/s]
17%|ββ | 293/1710 [02:25<12:32, 1.88it/s]
17%|ββ | 294/1710 [02:26<12:01, 1.96it/s]
17%|ββ | 295/1710 [02:26<11:05, 2.13it/s]
17%|ββ | 296/1710 [02:27<11:38, 2.02it/s]
17%|ββ | 297/1710 [02:27<10:40, 2.20it/s]
17%|ββ | 298/1710 [02:28<10:08, 2.32it/s]
17%|ββ | 299/1710 [02:28<10:36, 2.22it/s]
18%|ββ | 300/1710 [02:29<10:54, 2.15it/s]
18%|ββ | 301/1710 [02:29<10:41, 2.20it/s]
18%|ββ | 302/1710 [02:29<10:11, 2.30it/s]
18%|ββ | 303/1710 [02:30<10:28, 2.24it/s]
18%|ββ | 304/1710 [02:30<10:20, 2.26it/s]
18%|ββ | 305/1710 [02:31<10:27, 2.24it/s]
18%|ββ | 306/1710 [02:31<10:34, 2.21it/s]
18%|ββ | 307/1710 [02:32<11:00, 2.12it/s]
18%|ββ | 308/1710 [02:32<11:50, 1.97it/s]
18%|ββ | 309/1710 [02:33<10:55, 2.14it/s]
18%|ββ | 310/1710 [02:33<12:16, 1.90it/s]
18%|ββ | 311/1710 [02:34<11:21, 2.05it/s]
18%|ββ | 312/1710 [02:34<12:12, 1.91it/s]
18%|ββ | 313/1710 [02:35<12:28, 1.87it/s]
18%|ββ | 314/1710 [02:35<12:34, 1.85it/s]
18%|ββ | 315/1710 [02:36<11:26, 2.03it/s]
18%|ββ | 316/1710 [02:36<10:34, 2.20it/s]
19%|ββ | 317/1710 [02:37<12:28, 1.86it/s]
19%|ββ | 318/1710 [02:38<14:03, 1.65it/s]
19%|ββ | 319/1710 [02:38<13:08, 1.76it/s]
19%|ββ | 320/1710 [02:39<12:58, 1.79it/s]
19%|ββ | 321/1710 [02:39<11:26, 2.02it/s]
19%|ββ | 322/1710 [02:40<12:01, 1.92it/s]
19%|ββ | 323/1710 [02:40<12:13, 1.89it/s]
19%|ββ | 324/1710 [02:41<11:53, 1.94it/s]
19%|ββ | 325/1710 [02:41<11:28, 2.01it/s]
19%|ββ | 326/1710 [02:42<10:41, 2.16it/s]
19%|ββ | 327/1710 [02:42<10:45, 2.14it/s]
19%|ββ | 328/1710 [02:42<10:48, 2.13it/s]
19%|ββ | 329/1710 [02:43<09:59, 2.31it/s]
19%|ββ | 330/1710 [02:43<10:30, 2.19it/s]
19%|ββ | 331/1710 [02:44<10:30, 2.19it/s]
19%|ββ | 332/1710 [02:44<10:29, 2.19it/s]
19%|ββ | 333/1710 [02:45<09:55, 2.31it/s]
20%|ββ | 334/1710 [02:45<09:40, 2.37it/s]
20%|ββ | 335/1710 [02:45<09:28, 2.42it/s]
20%|ββ | 336/1710 [02:46<09:32, 2.40it/s]
20%|ββ | 337/1710 [02:46<09:06, 2.51it/s]
20%|ββ | 338/1710 [02:47<09:31, 2.40it/s]
20%|ββ | 339/1710 [02:47<09:23, 2.44it/s]
20%|ββ | 340/1710 [02:48<10:43, 2.13it/s]
20%|ββ | 341/1710 [02:48<12:19, 1.85it/s]
20%|ββ | 342/1710 [02:49<11:08, 2.05it/s][INFO|trainer.py:811] 2024-09-09 12:17:44,889 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:17:44,891 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:17:44,891 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:17:44,891 >> Batch size = 8
{'eval_loss': 0.15023551881313324, 'eval_precision': 0.5421052631578948, 'eval_recall': 0.6765188834154351, 'eval_f1': 0.6018991964937911, 'eval_accuracy': 0.9458275851005807, 'eval_runtime': 5.988, 'eval_samples_per_second': 420.673, 'eval_steps_per_second': 52.605, 'epoch': 1.0}
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:03, 77.06it/s][A
5%|β | 16/315 [00:00<00:03, 75.05it/s][A
8%|β | 24/315 [00:00<00:03, 76.55it/s][A
10%|β | 32/315 [00:00<00:03, 71.87it/s][A
13%|ββ | 41/315 [00:00<00:03, 75.36it/s][A
16%|ββ | 49/315 [00:00<00:03, 74.50it/s][A
18%|ββ | 57/315 [00:00<00:03, 74.68it/s][A
21%|ββ | 65/315 [00:00<00:03, 72.13it/s][A
23%|βββ | 73/315 [00:00<00:03, 74.30it/s][A
26%|βββ | 81/315 [00:01<00:03, 70.26it/s][A
28%|βββ | 89/315 [00:01<00:03, 67.44it/s][A
31%|βββ | 97/315 [00:01<00:03, 67.41it/s][A
33%|ββββ | 105/315 [00:01<00:03, 69.04it/s][A
36%|ββββ | 113/315 [00:01<00:02, 70.72it/s][A
38%|ββββ | 121/315 [00:01<00:02, 68.80it/s][A
41%|ββββ | 129/315 [00:01<00:02, 69.57it/s][A
43%|βββββ | 136/315 [00:01<00:02, 68.46it/s][A
45%|βββββ | 143/315 [00:02<00:02, 68.74it/s][A
48%|βββββ | 152/315 [00:02<00:02, 72.87it/s][A
51%|βββββ | 160/315 [00:02<00:02, 72.87it/s][A
53%|ββββββ | 168/315 [00:02<00:02, 71.56it/s][A
56%|ββββββ | 176/315 [00:02<00:01, 70.53it/s][A
58%|ββββββ | 184/315 [00:02<00:01, 68.57it/s][A
61%|ββββββ | 192/315 [00:02<00:01, 68.80it/s][A
63%|βββββββ | 199/315 [00:02<00:01, 65.97it/s][A
65%|βββββββ | 206/315 [00:02<00:01, 64.38it/s][A
68%|βββββββ | 214/315 [00:03<00:01, 67.85it/s][A
70%|βββββββ | 222/315 [00:03<00:01, 69.75it/s][A
73%|ββββββββ | 231/315 [00:03<00:01, 73.13it/s][A
76%|ββββββββ | 239/315 [00:03<00:01, 74.53it/s][A
78%|ββββββββ | 247/315 [00:03<00:00, 70.64it/s][A
81%|ββββββββ | 255/315 [00:03<00:00, 69.22it/s][A
83%|βββββββββ | 263/315 [00:03<00:00, 70.34it/s][A
86%|βββββββββ | 271/315 [00:03<00:00, 72.74it/s][A
89%|βββββββββ | 280/315 [00:03<00:00, 75.27it/s][A
91%|ββββββββββ| 288/315 [00:04<00:00, 72.01it/s][A
94%|ββββββββββ| 296/315 [00:04<00:00, 70.20it/s][A
97%|ββββββββββ| 304/315 [00:04<00:00, 71.71it/s][A
99%|ββββββββββ| 312/315 [00:04<00:00, 72.20it/s][A
[A
20%|ββ | 342/1710 [02:55<11:08, 2.05it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 72.20it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:17:50,795 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-342
[INFO|configuration_utils.py:472] 2024-09-09 12:17:50,796 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-342/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:17:51,803 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-342/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:17:51,804 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-342/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:17:51,804 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-342/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:17:54,812 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:17:54,812 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
20%|ββ | 343/1710 [02:59<1:18:27, 3.44s/it]
20%|ββ | 344/1710 [02:59<57:22, 2.52s/it]
20%|ββ | 345/1710 [03:00<43:17, 1.90s/it]
20%|ββ | 346/1710 [03:00<33:11, 1.46s/it]
20%|ββ | 347/1710 [03:01<27:33, 1.21s/it]
20%|ββ | 348/1710 [03:01<21:44, 1.04it/s]
20%|ββ | 349/1710 [03:02<20:28, 1.11it/s]
20%|ββ | 350/1710 [03:03<18:14, 1.24it/s]
21%|ββ | 351/1710 [03:03<15:22, 1.47it/s]
21%|ββ | 352/1710 [03:04<13:56, 1.62it/s]
21%|ββ | 353/1710 [03:04<14:17, 1.58it/s]
21%|ββ | 354/1710 [03:05<13:53, 1.63it/s]
21%|ββ | 355/1710 [03:05<13:50, 1.63it/s]
21%|ββ | 356/1710 [03:06<12:28, 1.81it/s]
21%|ββ | 357/1710 [03:06<11:08, 2.02it/s]
21%|ββ | 358/1710 [03:07<10:43, 2.10it/s]
21%|ββ | 359/1710 [03:07<09:37, 2.34it/s]
21%|ββ | 360/1710 [03:07<09:03, 2.48it/s]
21%|ββ | 361/1710 [03:08<08:53, 2.53it/s]
21%|ββ | 362/1710 [03:08<09:32, 2.35it/s]
21%|ββ | 363/1710 [03:09<09:32, 2.35it/s]
21%|βββ | 364/1710 [03:09<08:49, 2.54it/s]
21%|βββ | 365/1710 [03:09<08:53, 2.52it/s]
21%|βββ | 366/1710 [03:10<09:56, 2.25it/s]
21%|βββ | 367/1710 [03:10<09:35, 2.34it/s]
22%|βββ | 368/1710 [03:11<09:12, 2.43it/s]
22%|βββ | 369/1710 [03:11<10:02, 2.23it/s]
22%|βββ | 370/1710 [03:11<09:25, 2.37it/s]
22%|βββ | 371/1710 [03:12<09:41, 2.30it/s]
22%|βββ | 372/1710 [03:12<09:22, 2.38it/s]
22%|βββ | 373/1710 [03:13<09:03, 2.46it/s]
22%|βββ | 374/1710 [03:13<09:10, 2.43it/s]
22%|βββ | 375/1710 [03:14<08:54, 2.50it/s]
22%|βββ | 376/1710 [03:14<09:08, 2.43it/s]
22%|βββ | 377/1710 [03:14<09:14, 2.40it/s]
22%|βββ | 378/1710 [03:15<09:53, 2.25it/s]
22%|βββ | 379/1710 [03:15<10:21, 2.14it/s]
22%|βββ | 380/1710 [03:16<09:55, 2.23it/s]
22%|βββ | 381/1710 [03:16<09:40, 2.29it/s]
22%|βββ | 382/1710 [03:17<09:37, 2.30it/s]
22%|βββ | 383/1710 [03:17<09:35, 2.31it/s]
22%|βββ | 384/1710 [03:18<09:47, 2.26it/s]
23%|βββ | 385/1710 [03:18<09:08, 2.41it/s]
23%|βββ | 386/1710 [03:19<10:26, 2.11it/s]
23%|βββ | 387/1710 [03:19<12:56, 1.70it/s]
23%|βββ | 388/1710 [03:20<12:02, 1.83it/s]
23%|βββ | 389/1710 [03:20<11:52, 1.86it/s]
23%|βββ | 390/1710 [03:21<11:20, 1.94it/s]
23%|βββ | 391/1710 [03:21<10:06, 2.17it/s]
23%|βββ | 392/1710 [03:22<09:45, 2.25it/s]
23%|βββ | 393/1710 [03:22<10:25, 2.10it/s]
23%|βββ | 394/1710 [03:23<10:28, 2.09it/s]
23%|βββ | 395/1710 [03:23<09:55, 2.21it/s]
23%|βββ | 396/1710 [03:23<09:36, 2.28it/s]
23%|βββ | 397/1710 [03:24<10:58, 1.99it/s]
23%|βββ | 398/1710 [03:25<12:44, 1.72it/s]
23%|βββ | 399/1710 [03:25<12:00, 1.82it/s]
23%|βββ | 400/1710 [03:26<11:14, 1.94it/s]
23%|βββ | 401/1710 [03:26<10:06, 2.16it/s]
24%|βββ | 402/1710 [03:26<09:23, 2.32it/s]
24%|βββ | 403/1710 [03:27<10:36, 2.05it/s]
24%|βββ | 404/1710 [03:27<10:22, 2.10it/s]
24%|βββ | 405/1710 [03:28<10:20, 2.10it/s]
24%|βββ | 406/1710 [03:28<09:44, 2.23it/s]
24%|βββ | 407/1710 [03:29<10:05, 2.15it/s]
24%|βββ | 408/1710 [03:29<09:21, 2.32it/s]
24%|βββ | 409/1710 [03:30<09:36, 2.26it/s]
24%|βββ | 410/1710 [03:30<09:31, 2.28it/s]
24%|βββ | 411/1710 [03:31<09:52, 2.19it/s]
24%|βββ | 412/1710 [03:31<09:28, 2.28it/s]
24%|βββ | 413/1710 [03:31<09:34, 2.26it/s]
24%|βββ | 414/1710 [03:32<09:32, 2.26it/s]
24%|βββ | 415/1710 [03:32<09:12, 2.35it/s]
24%|βββ | 416/1710 [03:33<09:45, 2.21it/s]
24%|βββ | 417/1710 [03:33<09:32, 2.26it/s]
24%|βββ | 418/1710 [03:34<09:52, 2.18it/s]
25%|βββ | 419/1710 [03:34<09:45, 2.21it/s]
25%|βββ | 420/1710 [03:35<10:07, 2.13it/s]
25%|βββ | 421/1710 [03:35<09:30, 2.26it/s]
25%|βββ | 422/1710 [03:35<09:06, 2.36it/s]
25%|βββ | 423/1710 [03:36<09:18, 2.30it/s]
25%|βββ | 424/1710 [03:36<09:45, 2.20it/s]
25%|βββ | 425/1710 [03:37<10:29, 2.04it/s]
25%|βββ | 426/1710 [03:37<10:44, 1.99it/s]
25%|βββ | 427/1710 [03:38<10:06, 2.12it/s]
25%|βββ | 428/1710 [03:39<12:25, 1.72it/s]
25%|βββ | 429/1710 [03:39<13:00, 1.64it/s]
25%|βββ | 430/1710 [03:40<11:30, 1.85it/s]
25%|βββ | 431/1710 [03:40<10:32, 2.02it/s]
25%|βββ | 432/1710 [03:41<10:52, 1.96it/s]
25%|βββ | 433/1710 [03:41<10:17, 2.07it/s]
25%|βββ | 434/1710 [03:42<09:53, 2.15it/s]
25%|βββ | 435/1710 [03:42<10:07, 2.10it/s]
25%|βββ | 436/1710 [03:42<10:04, 2.11it/s]
26%|βββ | 437/1710 [03:43<09:54, 2.14it/s]
26%|βββ | 438/1710 [03:44<12:59, 1.63it/s]
26%|βββ | 439/1710 [03:44<11:59, 1.77it/s]
26%|βββ | 440/1710 [03:45<11:09, 1.90it/s]
26%|βββ | 441/1710 [03:45<10:51, 1.95it/s]
26%|βββ | 442/1710 [03:46<10:00, 2.11it/s]
26%|βββ | 443/1710 [03:46<09:52, 2.14it/s]
26%|βββ | 444/1710 [03:47<09:27, 2.23it/s]
26%|βββ | 445/1710 [03:47<09:21, 2.25it/s]
26%|βββ | 446/1710 [03:47<09:20, 2.26it/s]
26%|βββ | 447/1710 [03:48<10:06, 2.08it/s]
26%|βββ | 448/1710 [03:48<10:16, 2.05it/s]
26%|βββ | 449/1710 [03:49<09:41, 2.17it/s]
26%|βββ | 450/1710 [03:49<08:58, 2.34it/s]
26%|βββ | 451/1710 [03:50<08:40, 2.42it/s]
26%|βββ | 452/1710 [03:50<09:03, 2.32it/s]
26%|βββ | 453/1710 [03:51<11:05, 1.89it/s]
27%|βββ | 454/1710 [03:51<10:11, 2.05it/s]
27%|βββ | 455/1710 [03:52<09:53, 2.11it/s]
27%|βββ | 456/1710 [03:52<09:22, 2.23it/s]
27%|βββ | 457/1710 [03:52<08:39, 2.41it/s]
27%|βββ | 458/1710 [03:53<08:28, 2.46it/s]
27%|βββ | 459/1710 [03:53<08:43, 2.39it/s]
27%|βββ | 460/1710 [03:54<08:49, 2.36it/s]
27%|βββ | 461/1710 [03:54<08:40, 2.40it/s]
27%|βββ | 462/1710 [03:54<08:55, 2.33it/s]
27%|βββ | 463/1710 [03:55<09:28, 2.20it/s]
27%|βββ | 464/1710 [03:56<10:01, 2.07it/s]
27%|βββ | 465/1710 [03:56<09:38, 2.15it/s]
27%|βββ | 466/1710 [03:56<08:45, 2.37it/s]
27%|βββ | 467/1710 [03:57<07:57, 2.60it/s]
27%|βββ | 468/1710 [03:57<08:14, 2.51it/s]
27%|βββ | 469/1710 [03:57<08:32, 2.42it/s]
27%|βββ | 470/1710 [03:58<08:52, 2.33it/s]
28%|βββ | 471/1710 [03:58<08:19, 2.48it/s]
28%|βββ | 472/1710 [03:59<08:10, 2.52it/s]
28%|βββ | 473/1710 [03:59<08:03, 2.56it/s]
28%|βββ | 474/1710 [03:59<07:52, 2.61it/s]
28%|βββ | 475/1710 [04:00<08:20, 2.47it/s]
28%|βββ | 476/1710 [04:00<08:21, 2.46it/s]
28%|βββ | 477/1710 [04:01<08:47, 2.34it/s]
28%|βββ | 478/1710 [04:01<09:46, 2.10it/s]
28%|βββ | 479/1710 [04:02<09:09, 2.24it/s]
28%|βββ | 480/1710 [04:02<09:29, 2.16it/s]
28%|βββ | 481/1710 [04:03<09:35, 2.13it/s]
28%|βββ | 482/1710 [04:03<10:04, 2.03it/s]
28%|βββ | 483/1710 [04:04<10:04, 2.03it/s]
28%|βββ | 484/1710 [04:04<09:31, 2.14it/s]
28%|βββ | 485/1710 [04:05<09:25, 2.16it/s]
28%|βββ | 486/1710 [04:05<08:45, 2.33it/s]
28%|βββ | 487/1710 [04:05<09:08, 2.23it/s]
29%|βββ | 488/1710 [04:06<08:39, 2.35it/s]
29%|βββ | 489/1710 [04:06<08:23, 2.42it/s]
29%|βββ | 490/1710 [04:07<08:55, 2.28it/s]
29%|βββ | 491/1710 [04:07<09:03, 2.24it/s]
29%|βββ | 492/1710 [04:08<08:39, 2.34it/s]
29%|βββ | 493/1710 [04:08<09:30, 2.13it/s]
29%|βββ | 494/1710 [04:09<09:31, 2.13it/s]
29%|βββ | 495/1710 [04:09<09:39, 2.09it/s]
29%|βββ | 496/1710 [04:09<08:56, 2.26it/s]
29%|βββ | 497/1710 [04:10<08:47, 2.30it/s]
29%|βββ | 498/1710 [04:10<08:51, 2.28it/s]
29%|βββ | 499/1710 [04:11<08:24, 2.40it/s]
29%|βββ | 500/1710 [04:11<08:24, 2.40it/s]
29%|βββ | 500/1710 [04:11<08:24, 2.40it/s]
29%|βββ | 501/1710 [04:12<08:21, 2.41it/s]
29%|βββ | 502/1710 [04:12<08:26, 2.39it/s]
29%|βββ | 503/1710 [04:12<08:06, 2.48it/s]
29%|βββ | 504/1710 [04:13<08:47, 2.29it/s]
30%|βββ | 505/1710 [04:13<08:40, 2.32it/s]
30%|βββ | 506/1710 [04:14<10:01, 2.00it/s]
30%|βββ | 507/1710 [04:14<09:17, 2.16it/s]
30%|βββ | 508/1710 [04:15<09:16, 2.16it/s]
30%|βββ | 509/1710 [04:16<11:07, 1.80it/s]
30%|βββ | 510/1710 [04:16<11:36, 1.72it/s]
30%|βββ | 511/1710 [04:17<10:33, 1.89it/s]
30%|βββ | 512/1710 [04:17<10:06, 1.98it/s]
30%|βββ | 513/1710 [04:18<11:39, 1.71it/s][INFO|trainer.py:811] 2024-09-09 12:19:13,918 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:19:13,920 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:19:13,920 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:19:13,920 >> Batch size = 8
{'eval_loss': 0.15393643081188202, 'eval_precision': 0.5957753240518483, 'eval_recall': 0.6792556102900931, 'eval_f1': 0.6347826086956522, 'eval_accuracy': 0.9468221630466168, 'eval_runtime': 5.9023, 'eval_samples_per_second': 426.784, 'eval_steps_per_second': 53.369, 'epoch': 2.0}
{'loss': 0.1273, 'grad_norm': 1.020290732383728, 'learning_rate': 3.538011695906433e-05, 'epoch': 2.92}
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:04, 76.55it/s][A
5%|β | 16/315 [00:00<00:03, 74.76it/s][A
8%|β | 24/315 [00:00<00:03, 76.64it/s][A
10%|β | 32/315 [00:00<00:03, 72.00it/s][A
13%|ββ | 41/315 [00:00<00:03, 75.14it/s][A
16%|ββ | 49/315 [00:00<00:03, 74.50it/s][A
18%|ββ | 57/315 [00:00<00:03, 74.55it/s][A
21%|ββ | 65/315 [00:00<00:03, 71.94it/s][A
23%|βββ | 74/315 [00:00<00:03, 74.58it/s][A
26%|βββ | 82/315 [00:01<00:03, 70.19it/s][A
29%|βββ | 90/315 [00:01<00:03, 67.73it/s][A
31%|βββ | 97/315 [00:01<00:03, 67.21it/s][A
33%|ββββ | 105/315 [00:01<00:03, 69.02it/s][A
36%|ββββ | 113/315 [00:01<00:02, 70.49it/s][A
38%|ββββ | 121/315 [00:01<00:02, 68.91it/s][A
41%|ββββ | 129/315 [00:01<00:02, 69.60it/s][A
43%|βββββ | 136/315 [00:01<00:02, 68.75it/s][A
45%|βββββ | 143/315 [00:02<00:02, 68.85it/s][A
48%|βββββ | 152/315 [00:02<00:02, 72.96it/s][A
51%|βββββ | 160/315 [00:02<00:02, 72.98it/s][A
53%|ββββββ | 168/315 [00:02<00:02, 71.30it/s][A
56%|ββββββ | 176/315 [00:02<00:01, 70.27it/s][A
58%|ββββββ | 184/315 [00:02<00:01, 68.32it/s][A
61%|ββββββ | 192/315 [00:02<00:01, 68.37it/s][A
63%|βββββββ | 199/315 [00:02<00:01, 65.58it/s][A
65%|βββββββ | 206/315 [00:02<00:01, 64.03it/s][A
68%|βββββββ | 214/315 [00:03<00:01, 67.33it/s][A
70%|βββββββ | 222/315 [00:03<00:01, 69.48it/s][A
73%|ββββββββ | 231/315 [00:03<00:01, 72.82it/s][A
76%|ββββββββ | 239/315 [00:03<00:01, 74.16it/s][A
78%|ββββββββ | 247/315 [00:03<00:00, 69.80it/s][A
81%|ββββββββ | 255/315 [00:03<00:00, 68.36it/s][A
83%|βββββββββ | 263/315 [00:03<00:00, 70.27it/s][A
86%|βββββββββ | 271/315 [00:03<00:00, 72.23it/s][A
89%|βββββββββ | 280/315 [00:03<00:00, 75.28it/s][A
91%|ββββββββββ| 288/315 [00:04<00:00, 72.26it/s][A
94%|ββββββββββ| 296/315 [00:04<00:00, 70.88it/s][A
97%|ββββββββββ| 304/315 [00:04<00:00, 71.92it/s][A
99%|ββββββββββ| 312/315 [00:04<00:00, 72.12it/s][A
[A
30%|βββ | 513/1710 [04:24<11:39, 1.71it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 72.12it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:19:19,842 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-513
[INFO|configuration_utils.py:472] 2024-09-09 12:19:19,843 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-513/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:19:20,869 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-513/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:19:20,870 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-513/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:19:20,871 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-513/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:19:25,899 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:19:25,900 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
30%|βββ | 514/1710 [04:30<1:23:28, 4.19s/it]
30%|βββ | 515/1710 [04:31<1:00:28, 3.04s/it]
30%|βββ | 516/1710 [04:31<45:06, 2.27s/it]
30%|βββ | 517/1710 [04:32<33:52, 1.70s/it]
30%|βββ | 518/1710 [04:32<27:22, 1.38s/it]
30%|βββ | 519/1710 [04:33<21:46, 1.10s/it]
30%|βββ | 520/1710 [04:33<17:41, 1.12it/s]
30%|βββ | 521/1710 [04:33<14:43, 1.35it/s]
31%|βββ | 522/1710 [04:34<13:50, 1.43it/s]
31%|βββ | 523/1710 [04:34<11:43, 1.69it/s]
31%|βββ | 524/1710 [04:35<10:45, 1.84it/s]
31%|βββ | 525/1710 [04:35<11:02, 1.79it/s]
31%|βββ | 526/1710 [04:36<10:05, 1.96it/s]
31%|βββ | 527/1710 [04:36<09:35, 2.05it/s]
31%|βββ | 528/1710 [04:37<09:11, 2.14it/s]
31%|βββ | 529/1710 [04:37<08:25, 2.34it/s]
31%|βββ | 530/1710 [04:38<10:47, 1.82it/s]
31%|βββ | 531/1710 [04:38<11:03, 1.78it/s]
31%|βββ | 532/1710 [04:39<09:37, 2.04it/s]
31%|βββ | 533/1710 [04:39<09:15, 2.12it/s]
31%|βββ | 534/1710 [04:40<08:39, 2.26it/s]
31%|ββββ | 535/1710 [04:40<08:24, 2.33it/s]
31%|ββββ | 536/1710 [04:40<08:06, 2.41it/s]
31%|ββββ | 537/1710 [04:41<08:55, 2.19it/s]
31%|ββββ | 538/1710 [04:41<08:33, 2.28it/s]
32%|ββββ | 539/1710 [04:42<08:07, 2.40it/s]
32%|ββββ | 540/1710 [04:42<07:53, 2.47it/s]
32%|ββββ | 541/1710 [04:43<08:37, 2.26it/s]
32%|ββββ | 542/1710 [04:43<07:57, 2.44it/s]
32%|ββββ | 543/1710 [04:43<07:36, 2.56it/s]
32%|ββββ | 544/1710 [04:44<08:21, 2.32it/s]
32%|ββββ | 545/1710 [04:44<09:47, 1.98it/s]
32%|ββββ | 546/1710 [04:45<09:45, 1.99it/s]
32%|ββββ | 547/1710 [04:45<09:04, 2.14it/s]
32%|ββββ | 548/1710 [04:46<09:04, 2.13it/s]
32%|ββββ | 549/1710 [04:46<08:47, 2.20it/s]
32%|ββββ | 550/1710 [04:47<08:38, 2.24it/s]
32%|ββββ | 551/1710 [04:47<08:41, 2.22it/s]
32%|ββββ | 552/1710 [04:47<08:17, 2.33it/s]
32%|ββββ | 553/1710 [04:48<08:07, 2.37it/s]
32%|ββββ | 554/1710 [04:48<07:55, 2.43it/s]
32%|ββββ | 555/1710 [04:49<08:24, 2.29it/s]
33%|ββββ | 556/1710 [04:49<08:19, 2.31it/s]
33%|ββββ | 557/1710 [04:50<08:32, 2.25it/s]
33%|ββββ | 558/1710 [04:50<08:12, 2.34it/s]
33%|ββββ | 559/1710 [04:51<10:56, 1.75it/s]
33%|ββββ | 560/1710 [04:51<10:36, 1.81it/s]
33%|ββββ | 561/1710 [04:52<09:52, 1.94it/s]
33%|ββββ | 562/1710 [04:52<08:49, 2.17it/s]
33%|ββββ | 563/1710 [04:53<08:50, 2.16it/s]
33%|ββββ | 564/1710 [04:53<08:12, 2.33it/s]
33%|ββββ | 565/1710 [04:53<07:39, 2.49it/s]
33%|ββββ | 566/1710 [04:54<07:30, 2.54it/s]
33%|ββββ | 567/1710 [04:54<07:23, 2.58it/s]
33%|ββββ | 568/1710 [04:55<07:50, 2.43it/s]
33%|ββββ | 569/1710 [04:55<07:31, 2.53it/s]
33%|ββββ | 570/1710 [04:56<09:51, 1.93it/s]
33%|ββββ | 571/1710 [04:56<09:39, 1.96it/s]
33%|ββββ | 572/1710 [04:57<09:24, 2.02it/s]
34%|ββββ | 573/1710 [04:57<09:13, 2.05it/s]
34%|ββββ | 574/1710 [04:58<09:36, 1.97it/s]
34%|ββββ | 575/1710 [04:58<09:05, 2.08it/s]
34%|ββββ | 576/1710 [04:59<08:39, 2.18it/s]
34%|ββββ | 577/1710 [04:59<08:34, 2.20it/s]
34%|ββββ | 578/1710 [05:00<08:50, 2.13it/s]
34%|ββββ | 579/1710 [05:00<08:32, 2.21it/s]
34%|ββββ | 580/1710 [05:00<08:06, 2.32it/s]
34%|ββββ | 581/1710 [05:01<08:09, 2.31it/s]
34%|ββββ | 582/1710 [05:01<07:38, 2.46it/s]
34%|ββββ | 583/1710 [05:01<07:14, 2.60it/s]
34%|ββββ | 584/1710 [05:02<07:44, 2.42it/s]
34%|ββββ | 585/1710 [05:02<07:44, 2.42it/s]
34%|ββββ | 586/1710 [05:03<07:47, 2.41it/s]
34%|ββββ | 587/1710 [05:03<09:00, 2.08it/s]
34%|ββββ | 588/1710 [05:04<08:40, 2.16it/s]
34%|ββββ | 589/1710 [05:04<08:32, 2.19it/s]
35%|ββββ | 590/1710 [05:05<08:24, 2.22it/s]
35%|ββββ | 591/1710 [05:05<08:05, 2.30it/s]
35%|ββββ | 592/1710 [05:06<09:13, 2.02it/s]
35%|ββββ | 593/1710 [05:06<09:40, 1.92it/s]
35%|ββββ | 594/1710 [05:07<09:06, 2.04it/s]
35%|ββββ | 595/1710 [05:07<08:42, 2.14it/s]
35%|ββββ | 596/1710 [05:08<08:30, 2.18it/s]
35%|ββββ | 597/1710 [05:08<10:24, 1.78it/s]
35%|ββββ | 598/1710 [05:09<09:48, 1.89it/s]
35%|ββββ | 599/1710 [05:09<08:59, 2.06it/s]
35%|ββββ | 600/1710 [05:10<08:30, 2.17it/s]
35%|ββββ | 601/1710 [05:10<08:19, 2.22it/s]
35%|ββββ | 602/1710 [05:10<08:21, 2.21it/s]
35%|ββββ | 603/1710 [05:11<07:58, 2.31it/s]
35%|ββββ | 604/1710 [05:12<10:18, 1.79it/s]
35%|ββββ | 605/1710 [05:12<09:31, 1.94it/s]
35%|ββββ | 606/1710 [05:13<08:47, 2.09it/s]
35%|ββββ | 607/1710 [05:13<08:18, 2.21it/s]
36%|ββββ | 608/1710 [05:13<08:43, 2.11it/s]
36%|ββββ | 609/1710 [05:14<09:12, 1.99it/s]
36%|ββββ | 610/1710 [05:14<08:54, 2.06it/s]
36%|ββββ | 611/1710 [05:15<08:57, 2.04it/s]
36%|ββββ | 612/1710 [05:15<07:56, 2.30it/s]
36%|ββββ | 613/1710 [05:16<08:03, 2.27it/s]
36%|ββββ | 614/1710 [05:16<08:36, 2.12it/s]
36%|ββββ | 615/1710 [05:17<08:04, 2.26it/s]
36%|ββββ | 616/1710 [05:17<07:38, 2.39it/s]
36%|ββββ | 617/1710 [05:18<08:36, 2.12it/s]
36%|ββββ | 618/1710 [05:18<08:20, 2.18it/s]
36%|ββββ | 619/1710 [05:18<08:13, 2.21it/s]
36%|ββββ | 620/1710 [05:19<08:16, 2.19it/s]
36%|ββββ | 621/1710 [05:19<08:33, 2.12it/s]
36%|ββββ | 622/1710 [05:20<08:24, 2.16it/s]
36%|ββββ | 623/1710 [05:20<08:22, 2.17it/s]
36%|ββββ | 624/1710 [05:21<07:48, 2.32it/s]
37%|ββββ | 625/1710 [05:21<07:59, 2.26it/s]
37%|ββββ | 626/1710 [05:22<07:37, 2.37it/s]
37%|ββββ | 627/1710 [05:22<07:36, 2.37it/s]
37%|ββββ | 628/1710 [05:22<08:07, 2.22it/s]
37%|ββββ | 629/1710 [05:23<07:33, 2.38it/s]
37%|ββββ | 630/1710 [05:23<08:02, 2.24it/s]
37%|ββββ | 631/1710 [05:24<08:40, 2.07it/s]
37%|ββββ | 632/1710 [05:24<08:11, 2.19it/s]
37%|ββββ | 633/1710 [05:25<07:37, 2.35it/s]
37%|ββββ | 634/1710 [05:25<07:31, 2.38it/s]
37%|ββββ | 635/1710 [05:26<08:41, 2.06it/s]
37%|ββββ | 636/1710 [05:26<08:05, 2.21it/s]
37%|ββββ | 637/1710 [05:27<08:06, 2.20it/s]
37%|ββββ | 638/1710 [05:27<07:46, 2.30it/s]
37%|ββββ | 639/1710 [05:27<08:09, 2.19it/s]
37%|ββββ | 640/1710 [05:28<08:13, 2.17it/s]
37%|ββββ | 641/1710 [05:28<08:43, 2.04it/s]
38%|ββββ | 642/1710 [05:29<08:12, 2.17it/s]
38%|ββββ | 643/1710 [05:29<07:43, 2.30it/s]
38%|ββββ | 644/1710 [05:30<08:09, 2.18it/s]
38%|ββββ | 645/1710 [05:30<07:59, 2.22it/s]
38%|ββββ | 646/1710 [05:31<08:13, 2.15it/s]
38%|ββββ | 647/1710 [05:31<08:10, 2.17it/s]
38%|ββββ | 648/1710 [05:31<07:40, 2.31it/s]
38%|ββββ | 649/1710 [05:32<08:02, 2.20it/s]
38%|ββββ | 650/1710 [05:32<07:46, 2.27it/s]
38%|ββββ | 651/1710 [05:33<07:36, 2.32it/s]
38%|ββββ | 652/1710 [05:33<07:36, 2.32it/s]
38%|ββββ | 653/1710 [05:34<08:27, 2.08it/s]
38%|ββββ | 654/1710 [05:34<08:15, 2.13it/s]
38%|ββββ | 655/1710 [05:35<07:37, 2.31it/s]
38%|ββββ | 656/1710 [05:35<07:20, 2.39it/s]
38%|ββββ | 657/1710 [05:35<07:07, 2.46it/s]
38%|ββββ | 658/1710 [05:36<07:23, 2.37it/s]
39%|ββββ | 659/1710 [05:36<07:54, 2.21it/s]
39%|ββββ | 660/1710 [05:37<08:19, 2.10it/s]
39%|ββββ | 661/1710 [05:37<07:50, 2.23it/s]
39%|ββββ | 662/1710 [05:38<07:44, 2.26it/s]
39%|ββββ | 663/1710 [05:38<07:43, 2.26it/s]
39%|ββββ | 664/1710 [05:38<07:08, 2.44it/s]
39%|ββββ | 665/1710 [05:39<06:53, 2.53it/s]
39%|ββββ | 666/1710 [05:39<07:16, 2.39it/s]
39%|ββββ | 667/1710 [05:40<07:20, 2.37it/s]
39%|ββββ | 668/1710 [05:40<07:04, 2.45it/s]
39%|ββββ | 669/1710 [05:41<10:09, 1.71it/s]
39%|ββββ | 670/1710 [05:42<09:09, 1.89it/s]
39%|ββββ | 671/1710 [05:42<08:57, 1.93it/s]
39%|ββββ | 672/1710 [05:43<09:56, 1.74it/s]
39%|ββββ | 673/1710 [05:43<08:53, 1.94it/s]
39%|ββββ | 674/1710 [05:44<08:35, 2.01it/s]
39%|ββββ | 675/1710 [05:44<08:25, 2.05it/s]
40%|ββββ | 676/1710 [05:45<08:25, 2.04it/s]
40%|ββββ | 677/1710 [05:45<08:01, 2.14it/s]
40%|ββββ | 678/1710 [05:45<07:40, 2.24it/s]
40%|ββββ | 679/1710 [05:46<10:30, 1.64it/s]
40%|ββββ | 680/1710 [05:47<09:10, 1.87it/s]
40%|ββββ | 681/1710 [05:47<09:52, 1.74it/s]
40%|ββββ | 682/1710 [05:48<09:09, 1.87it/s]
40%|ββββ | 683/1710 [05:48<08:13, 2.08it/s]
40%|ββββ | 684/1710 [05:48<07:29, 2.28it/s][INFO|trainer.py:811] 2024-09-09 12:20:44,622 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:20:44,625 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:20:44,625 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:20:44,625 >> Batch size = 8
{'eval_loss': 0.1837530881166458, 'eval_precision': 0.6325831702544031, 'eval_recall': 0.7077175697865353, 'eval_f1': 0.6680444329630587, 'eval_accuracy': 0.9468382046263916, 'eval_runtime': 5.9204, 'eval_samples_per_second': 425.477, 'eval_steps_per_second': 53.206, 'epoch': 3.0}
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:03, 77.82it/s][A
5%|β | 16/315 [00:00<00:04, 73.85it/s][A
8%|β | 24/315 [00:00<00:03, 75.96it/s][A
10%|β | 32/315 [00:00<00:03, 71.57it/s][A
13%|ββ | 41/315 [00:00<00:03, 75.27it/s][A
16%|ββ | 49/315 [00:00<00:03, 74.26it/s][A
18%|ββ | 57/315 [00:00<00:03, 74.33it/s][A
21%|ββ | 65/315 [00:00<00:03, 71.75it/s][A
23%|βββ | 73/315 [00:00<00:03, 73.81it/s][A
26%|βββ | 81/315 [00:01<00:03, 70.09it/s][A
28%|βββ | 89/315 [00:01<00:03, 67.14it/s][A
31%|βββ | 97/315 [00:01<00:03, 67.19it/s][A
33%|ββββ | 105/315 [00:01<00:03, 68.76it/s][A
36%|ββββ | 113/315 [00:01<00:02, 70.14it/s][A
38%|ββββ | 121/315 [00:01<00:02, 68.44it/s][A
41%|ββββ | 129/315 [00:01<00:02, 69.46it/s][A
43%|βββββ | 136/315 [00:01<00:02, 68.80it/s][A
45%|βββββ | 143/315 [00:02<00:02, 69.00it/s][A
48%|βββββ | 152/315 [00:02<00:02, 73.01it/s][A
51%|βββββ | 160/315 [00:02<00:02, 73.09it/s][A
53%|ββββββ | 168/315 [00:02<00:02, 71.75it/s][A
56%|ββββββ | 176/315 [00:02<00:01, 70.75it/s][A
58%|ββββββ | 184/315 [00:02<00:01, 68.76it/s][A
61%|ββββββ | 192/315 [00:02<00:01, 68.24it/s][A
63%|βββββββ | 199/315 [00:02<00:01, 65.54it/s][A
65%|βββββββ | 206/315 [00:02<00:01, 64.34it/s][A
68%|βββββββ | 214/315 [00:03<00:01, 67.80it/s][A
70%|βββββββ | 222/315 [00:03<00:01, 69.65it/s][A
73%|ββββββββ | 231/315 [00:03<00:01, 72.94it/s][A
76%|ββββββββ | 239/315 [00:03<00:01, 74.13it/s][A
78%|ββββββββ | 247/315 [00:03<00:00, 70.32it/s][A
81%|ββββββββ | 255/315 [00:03<00:00, 69.10it/s][A
83%|βββββββββ | 263/315 [00:03<00:00, 70.38it/s][A
86%|βββββββββ | 271/315 [00:03<00:00, 72.51it/s][A
89%|βββββββββ | 280/315 [00:03<00:00, 74.93it/s][A
91%|ββββββββββ| 288/315 [00:04<00:00, 71.84it/s][A
94%|ββββββββββ| 296/315 [00:04<00:00, 70.55it/s][A
97%|ββββββββββ| 304/315 [00:04<00:00, 71.99it/s][A
99%|ββββββββββ| 312/315 [00:04<00:00, 72.72it/s][A
[A
40%|ββββ | 684/1710 [05:54<07:29, 2.28it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 72.72it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:20:50,545 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-684
[INFO|configuration_utils.py:472] 2024-09-09 12:20:50,547 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-684/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:20:51,556 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-684/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:20:51,557 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-684/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:20:51,558 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-684/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:20:54,643 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:20:54,643 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
40%|ββββ | 685/1710 [05:59<58:21, 3.42s/it]
40%|ββββ | 686/1710 [05:59<43:44, 2.56s/it]
40%|ββββ | 687/1710 [06:00<33:23, 1.96s/it]
40%|ββββ | 688/1710 [06:00<26:00, 1.53s/it]
40%|ββββ | 689/1710 [06:01<20:06, 1.18s/it]
40%|ββββ | 690/1710 [06:01<16:09, 1.05it/s]
40%|ββββ | 691/1710 [06:02<13:18, 1.28it/s]
40%|ββββ | 692/1710 [06:02<11:37, 1.46it/s]
41%|ββββ | 693/1710 [06:03<12:01, 1.41it/s]
41%|ββββ | 694/1710 [06:03<10:45, 1.57it/s]
41%|ββββ | 695/1710 [06:04<09:24, 1.80it/s]
41%|ββββ | 696/1710 [06:04<08:29, 1.99it/s]
41%|ββββ | 697/1710 [06:04<07:36, 2.22it/s]
41%|ββββ | 698/1710 [06:05<08:23, 2.01it/s]
41%|ββββ | 699/1710 [06:05<07:52, 2.14it/s]
41%|ββββ | 700/1710 [06:06<07:50, 2.15it/s]
41%|ββββ | 701/1710 [06:06<08:07, 2.07it/s]
41%|ββββ | 702/1710 [06:07<07:46, 2.16it/s]
41%|ββββ | 703/1710 [06:07<07:54, 2.12it/s]
41%|ββββ | 704/1710 [06:08<07:31, 2.23it/s]
41%|ββββ | 705/1710 [06:08<07:08, 2.35it/s]
41%|βββββ | 706/1710 [06:08<07:00, 2.39it/s]
41%|βββββ | 707/1710 [06:09<06:42, 2.49it/s]
41%|βββββ | 708/1710 [06:09<06:27, 2.59it/s]
41%|βββββ | 709/1710 [06:10<06:31, 2.55it/s]
42%|βββββ | 710/1710 [06:10<06:26, 2.59it/s]
42%|βββββ | 711/1710 [06:10<06:33, 2.54it/s]
42%|βββββ | 712/1710 [06:11<08:21, 1.99it/s]
42%|βββββ | 713/1710 [06:12<07:48, 2.13it/s]
42%|βββββ | 714/1710 [06:12<07:09, 2.32it/s]
42%|βββββ | 715/1710 [06:12<07:21, 2.25it/s]
42%|βββββ | 716/1710 [06:13<07:31, 2.20it/s]
42%|βββββ | 717/1710 [06:13<07:34, 2.18it/s]
42%|βββββ | 718/1710 [06:14<07:23, 2.24it/s]
42%|βββββ | 719/1710 [06:14<07:04, 2.33it/s]
42%|βββββ | 720/1710 [06:15<08:07, 2.03it/s]
42%|βββββ | 721/1710 [06:16<09:23, 1.75it/s]
42%|βββββ | 722/1710 [06:16<08:31, 1.93it/s]
42%|βββββ | 723/1710 [06:16<08:00, 2.06it/s]
42%|βββββ | 724/1710 [06:17<07:26, 2.21it/s]
42%|βββββ | 725/1710 [06:17<07:33, 2.17it/s]
42%|βββββ | 726/1710 [06:18<07:30, 2.18it/s]
43%|βββββ | 727/1710 [06:18<07:21, 2.22it/s]
43%|βββββ | 728/1710 [06:18<07:16, 2.25it/s]
43%|βββββ | 729/1710 [06:19<07:16, 2.25it/s]
43%|βββββ | 730/1710 [06:19<07:37, 2.14it/s]
43%|βββββ | 731/1710 [06:20<07:16, 2.24it/s]
43%|βββββ | 732/1710 [06:21<09:06, 1.79it/s]
43%|βββββ | 733/1710 [06:21<08:17, 1.97it/s]
43%|βββββ | 734/1710 [06:22<08:05, 2.01it/s]
43%|βββββ | 735/1710 [06:22<07:20, 2.21it/s]
43%|βββββ | 736/1710 [06:22<06:48, 2.39it/s]
43%|βββββ | 737/1710 [06:23<06:53, 2.35it/s]
43%|βββββ | 738/1710 [06:23<06:33, 2.47it/s]
43%|βββββ | 739/1710 [06:23<06:47, 2.38it/s]
43%|βββββ | 740/1710 [06:24<06:53, 2.35it/s]
43%|βββββ | 741/1710 [06:24<07:03, 2.29it/s]
43%|βββββ | 742/1710 [06:25<07:20, 2.20it/s]
43%|βββββ | 743/1710 [06:25<06:52, 2.35it/s]
44%|βββββ | 744/1710 [06:26<06:45, 2.38it/s]
44%|βββββ | 745/1710 [06:26<06:27, 2.49it/s]
44%|βββββ | 746/1710 [06:26<06:33, 2.45it/s]
44%|βββββ | 747/1710 [06:27<06:34, 2.44it/s]
44%|βββββ | 748/1710 [06:27<06:53, 2.33it/s]
44%|βββββ | 749/1710 [06:28<06:32, 2.45it/s]
44%|βββββ | 750/1710 [06:28<07:04, 2.26it/s]
44%|βββββ | 751/1710 [06:29<06:52, 2.32it/s]
44%|βββββ | 752/1710 [06:29<07:07, 2.24it/s]
44%|βββββ | 753/1710 [06:30<07:13, 2.21it/s]
44%|βββββ | 754/1710 [06:30<07:17, 2.19it/s]
44%|βββββ | 755/1710 [06:30<07:24, 2.15it/s]
44%|βββββ | 756/1710 [06:31<07:10, 2.22it/s]
44%|βββββ | 757/1710 [06:31<06:52, 2.31it/s]
44%|βββββ | 758/1710 [06:32<07:40, 2.07it/s]
44%|βββββ | 759/1710 [06:32<07:50, 2.02it/s]
44%|βββββ | 760/1710 [06:33<08:20, 1.90it/s]
45%|βββββ | 761/1710 [06:33<07:52, 2.01it/s]
45%|βββββ | 762/1710 [06:34<10:14, 1.54it/s]
45%|βββββ | 763/1710 [06:35<08:51, 1.78it/s]
45%|βββββ | 764/1710 [06:36<10:01, 1.57it/s]
45%|βββββ | 765/1710 [06:36<09:41, 1.63it/s]
45%|βββββ | 766/1710 [06:37<09:38, 1.63it/s]
45%|βββββ | 767/1710 [06:37<08:34, 1.83it/s]
45%|βββββ | 768/1710 [06:38<08:11, 1.92it/s]
45%|βββββ | 769/1710 [06:38<08:35, 1.83it/s]
45%|βββββ | 770/1710 [06:39<07:59, 1.96it/s]
45%|βββββ | 771/1710 [06:39<07:10, 2.18it/s]
45%|βββββ | 772/1710 [06:40<07:18, 2.14it/s]
45%|βββββ | 773/1710 [06:40<07:18, 2.14it/s]
45%|βββββ | 774/1710 [06:40<07:09, 2.18it/s]
45%|βββββ | 775/1710 [06:41<07:41, 2.03it/s]
45%|βββββ | 776/1710 [06:41<07:22, 2.11it/s]
45%|βββββ | 777/1710 [06:42<06:46, 2.30it/s]
45%|βββββ | 778/1710 [06:42<07:29, 2.07it/s]
46%|βββββ | 779/1710 [06:43<07:40, 2.02it/s]
46%|βββββ | 780/1710 [06:43<07:20, 2.11it/s]
46%|βββββ | 781/1710 [06:44<07:23, 2.09it/s]
46%|βββββ | 782/1710 [06:44<06:49, 2.27it/s]
46%|βββββ | 783/1710 [06:45<06:29, 2.38it/s]
46%|βββββ | 784/1710 [06:45<06:20, 2.43it/s]
46%|βββββ | 785/1710 [06:45<06:20, 2.43it/s]
46%|βββββ | 786/1710 [06:46<06:33, 2.35it/s]
46%|βββββ | 787/1710 [06:46<06:20, 2.42it/s]
46%|βββββ | 788/1710 [06:47<06:37, 2.32it/s]
46%|βββββ | 789/1710 [06:47<07:32, 2.04it/s]
46%|βββββ | 790/1710 [06:48<07:11, 2.13it/s]
46%|βββββ | 791/1710 [06:48<06:46, 2.26it/s]
46%|βββββ | 792/1710 [06:48<06:25, 2.38it/s]
46%|βββββ | 793/1710 [06:49<06:33, 2.33it/s]
46%|βββββ | 794/1710 [06:49<06:33, 2.33it/s]
46%|βββββ | 795/1710 [06:50<06:37, 2.30it/s]
47%|βββββ | 796/1710 [06:50<06:44, 2.26it/s]
47%|βββββ | 797/1710 [06:51<07:03, 2.16it/s]
47%|βββββ | 798/1710 [06:51<06:49, 2.23it/s]
47%|βββββ | 799/1710 [06:52<06:26, 2.36it/s]
47%|βββββ | 800/1710 [06:52<06:12, 2.44it/s]
47%|βββββ | 801/1710 [06:53<07:40, 1.98it/s]
47%|βββββ | 802/1710 [06:53<07:04, 2.14it/s]
47%|βββββ | 803/1710 [06:53<06:59, 2.16it/s]
47%|βββββ | 804/1710 [06:54<07:15, 2.08it/s]
47%|βββββ | 805/1710 [06:54<07:01, 2.15it/s]
47%|βββββ | 806/1710 [06:55<06:39, 2.26it/s]
47%|βββββ | 807/1710 [06:55<06:47, 2.22it/s]
47%|βββββ | 808/1710 [06:56<07:02, 2.13it/s]
47%|βββββ | 809/1710 [06:56<06:48, 2.21it/s]
47%|βββββ | 810/1710 [06:57<06:37, 2.26it/s]
47%|βββββ | 811/1710 [06:57<08:25, 1.78it/s]
47%|βββββ | 812/1710 [06:58<08:27, 1.77it/s]
48%|βββββ | 813/1710 [06:58<07:42, 1.94it/s]
48%|βββββ | 814/1710 [06:59<07:15, 2.06it/s]
48%|βββββ | 815/1710 [06:59<07:01, 2.12it/s]
48%|βββββ | 816/1710 [07:00<06:50, 2.18it/s]
48%|βββββ | 817/1710 [07:00<07:47, 1.91it/s]
48%|βββββ | 818/1710 [07:01<07:30, 1.98it/s]
48%|βββββ | 819/1710 [07:01<07:12, 2.06it/s]
48%|βββββ | 820/1710 [07:02<06:52, 2.16it/s]
48%|βββββ | 821/1710 [07:02<06:21, 2.33it/s]
48%|βββββ | 822/1710 [07:03<06:41, 2.21it/s]
48%|βββββ | 823/1710 [07:03<06:46, 2.18it/s]
48%|βββββ | 824/1710 [07:03<06:27, 2.29it/s]
48%|βββββ | 825/1710 [07:04<06:34, 2.25it/s]
48%|βββββ | 826/1710 [07:04<06:15, 2.36it/s]
48%|βββββ | 827/1710 [07:05<06:25, 2.29it/s]
48%|βββββ | 828/1710 [07:05<06:08, 2.40it/s]
48%|βββββ | 829/1710 [07:06<06:18, 2.33it/s]
49%|βββββ | 830/1710 [07:06<06:09, 2.38it/s]
49%|βββββ | 831/1710 [07:06<05:47, 2.53it/s]
49%|βββββ | 832/1710 [07:07<06:40, 2.19it/s]
49%|βββββ | 833/1710 [07:07<06:10, 2.37it/s]
49%|βββββ | 834/1710 [07:08<06:16, 2.32it/s]
49%|βββββ | 835/1710 [07:08<06:11, 2.36it/s]
49%|βββββ | 836/1710 [07:09<06:44, 2.16it/s]
49%|βββββ | 837/1710 [07:09<07:02, 2.07it/s]
49%|βββββ | 838/1710 [07:10<06:59, 2.08it/s]
49%|βββββ | 839/1710 [07:10<06:50, 2.12it/s]
49%|βββββ | 840/1710 [07:10<06:34, 2.20it/s]
49%|βββββ | 841/1710 [07:11<07:24, 1.95it/s]
49%|βββββ | 842/1710 [07:11<06:39, 2.17it/s]
49%|βββββ | 843/1710 [07:12<06:14, 2.31it/s]
49%|βββββ | 844/1710 [07:12<05:52, 2.46it/s]
49%|βββββ | 845/1710 [07:13<05:44, 2.51it/s]
49%|βββββ | 846/1710 [07:13<05:48, 2.48it/s]
50%|βββββ | 847/1710 [07:13<06:03, 2.37it/s]
50%|βββββ | 848/1710 [07:14<06:24, 2.24it/s]
50%|βββββ | 849/1710 [07:14<06:08, 2.33it/s]
50%|βββββ | 850/1710 [07:15<06:31, 2.20it/s]
50%|βββββ | 851/1710 [07:15<07:16, 1.97it/s]
50%|βββββ | 852/1710 [07:16<06:58, 2.05it/s]
50%|βββββ | 853/1710 [07:16<06:22, 2.24it/s]
50%|βββββ | 854/1710 [07:17<08:00, 1.78it/s]
50%|βββββ | 855/1710 [07:17<07:02, 2.03it/s][INFO|trainer.py:811] 2024-09-09 12:22:13,597 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:22:13,600 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:22:13,600 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:22:13,600 >> Batch size = 8
{'eval_loss': 0.20180054008960724, 'eval_precision': 0.6321671525753159, 'eval_recall': 0.7120963327859879, 'eval_f1': 0.6697554697554697, 'eval_accuracy': 0.9466296640893195, 'eval_runtime': 5.9193, 'eval_samples_per_second': 425.559, 'eval_steps_per_second': 53.216, 'epoch': 4.0}
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:03, 78.93it/s][A
5%|β | 16/315 [00:00<00:03, 75.67it/s][A
8%|β | 24/315 [00:00<00:03, 77.43it/s][A
10%|β | 32/315 [00:00<00:03, 72.51it/s][A
13%|ββ | 41/315 [00:00<00:03, 76.59it/s][A
16%|ββ | 49/315 [00:00<00:03, 75.19it/s][A
18%|ββ | 57/315 [00:00<00:03, 75.16it/s][A
21%|ββ | 65/315 [00:00<00:03, 72.01it/s][A
23%|βββ | 73/315 [00:00<00:03, 74.00it/s][A
26%|βββ | 81/315 [00:01<00:03, 70.34it/s][A
28%|βββ | 89/315 [00:01<00:03, 67.95it/s][A
31%|βββ | 97/315 [00:01<00:03, 67.54it/s][A
33%|ββββ | 105/315 [00:01<00:03, 69.21it/s][A
36%|ββββ | 113/315 [00:01<00:02, 70.94it/s][A
38%|ββββ | 121/315 [00:01<00:02, 69.41it/s][A
41%|ββββ | 129/315 [00:01<00:02, 70.59it/s][A
43%|βββββ | 137/315 [00:01<00:02, 70.14it/s][A
46%|βββββ | 145/315 [00:02<00:02, 70.44it/s][A
49%|βββββ | 154/315 [00:02<00:02, 73.99it/s][A
51%|ββββββ | 162/315 [00:02<00:02, 72.44it/s][A
54%|ββββββ | 170/315 [00:02<00:02, 71.54it/s][A
57%|ββββββ | 178/315 [00:02<00:01, 70.94it/s][A
59%|ββββββ | 186/315 [00:02<00:01, 68.96it/s][A
61%|βββββββ | 193/315 [00:02<00:01, 68.54it/s][A
63%|βββββββ | 200/315 [00:02<00:01, 65.85it/s][A
66%|βββββββ | 207/315 [00:02<00:01, 64.60it/s][A
68%|βββββββ | 215/315 [00:03<00:01, 67.64it/s][A
71%|βββββββ | 223/315 [00:03<00:01, 70.13it/s][A
74%|ββββββββ | 232/315 [00:03<00:01, 73.45it/s][A
76%|ββββββββ | 240/315 [00:03<00:01, 73.27it/s][A
79%|ββββββββ | 248/315 [00:03<00:00, 71.10it/s][A
81%|βββββββββ | 256/315 [00:03<00:00, 69.16it/s][A
84%|βββββββββ | 264/315 [00:03<00:00, 70.02it/s][A
87%|βββββββββ | 273/315 [00:03<00:00, 73.29it/s][A
90%|βββββββββ | 282/315 [00:03<00:00, 75.61it/s][A
92%|ββββββββββ| 290/315 [00:04<00:00, 71.21it/s][A
95%|ββββββββββ| 298/315 [00:04<00:00, 70.13it/s][A
97%|ββββββββββ| 306/315 [00:04<00:00, 72.26it/s][A
100%|ββββββββββ| 314/315 [00:04<00:00, 70.37it/s][A
[A
50%|βββββ | 855/1710 [07:23<07:02, 2.03it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 70.37it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:22:19,502 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-855
[INFO|configuration_utils.py:472] 2024-09-09 12:22:19,503 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-855/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:22:20,520 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-855/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:22:20,521 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-855/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:22:20,521 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-855/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:22:23,617 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:22:23,618 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
50%|βββββ | 856/1710 [07:28<49:47, 3.50s/it]
50%|βββββ | 857/1710 [07:28<36:38, 2.58s/it]
50%|βββββ | 858/1710 [07:29<27:38, 1.95s/it]
50%|βββββ | 859/1710 [07:29<21:05, 1.49s/it]
50%|βββββ | 860/1710 [07:30<16:46, 1.18s/it]
50%|βββββ | 861/1710 [07:30<13:59, 1.01it/s]
50%|βββββ | 862/1710 [07:31<11:25, 1.24it/s]
50%|βββββ | 863/1710 [07:31<09:20, 1.51it/s]
51%|βββββ | 864/1710 [07:31<08:31, 1.65it/s]
51%|βββββ | 865/1710 [07:32<07:42, 1.83it/s]
51%|βββββ | 866/1710 [07:32<07:16, 1.93it/s]
51%|βββββ | 867/1710 [07:33<06:57, 2.02it/s]
51%|βββββ | 868/1710 [07:33<06:51, 2.05it/s]
51%|βββββ | 869/1710 [07:34<06:43, 2.08it/s]
51%|βββββ | 870/1710 [07:34<07:00, 2.00it/s]
51%|βββββ | 871/1710 [07:35<06:47, 2.06it/s]
51%|βββββ | 872/1710 [07:35<06:29, 2.15it/s]
51%|βββββ | 873/1710 [07:36<06:31, 2.14it/s]
51%|βββββ | 874/1710 [07:36<06:16, 2.22it/s]
51%|βββββ | 875/1710 [07:36<06:07, 2.27it/s]
51%|βββββ | 876/1710 [07:37<05:35, 2.49it/s]
51%|ββββββ | 877/1710 [07:37<05:57, 2.33it/s]
51%|ββββββ | 878/1710 [07:38<06:00, 2.31it/s]
51%|ββββββ | 879/1710 [07:38<05:42, 2.43it/s]
51%|ββββββ | 880/1710 [07:39<06:07, 2.26it/s]
52%|ββββββ | 881/1710 [07:39<06:57, 1.99it/s]
52%|ββββββ | 882/1710 [07:40<06:40, 2.07it/s]
52%|ββββββ | 883/1710 [07:40<07:21, 1.87it/s]
52%|ββββββ | 884/1710 [07:41<06:38, 2.07it/s]
52%|ββββββ | 885/1710 [07:41<06:25, 2.14it/s]
52%|ββββββ | 886/1710 [07:42<06:17, 2.19it/s]
52%|ββββββ | 887/1710 [07:42<07:21, 1.86it/s]
52%|ββββββ | 888/1710 [07:43<07:38, 1.79it/s]
52%|ββββββ | 889/1710 [07:43<08:01, 1.70it/s]
52%|ββββββ | 890/1710 [07:44<07:40, 1.78it/s]
52%|ββββββ | 891/1710 [07:44<07:02, 1.94it/s]
52%|ββββββ | 892/1710 [07:45<06:47, 2.01it/s]
52%|ββββββ | 893/1710 [07:45<06:52, 1.98it/s]
52%|ββββββ | 894/1710 [07:46<06:43, 2.02it/s]
52%|ββββββ | 895/1710 [07:46<06:01, 2.26it/s]
52%|ββββββ | 896/1710 [07:47<05:50, 2.33it/s]
52%|ββββββ | 897/1710 [07:47<06:04, 2.23it/s]
53%|ββββββ | 898/1710 [07:48<06:09, 2.20it/s]
53%|ββββββ | 899/1710 [07:48<05:43, 2.36it/s]
53%|ββββββ | 900/1710 [07:48<05:47, 2.33it/s]
53%|ββββββ | 901/1710 [07:49<06:07, 2.20it/s]
53%|ββββββ | 902/1710 [07:50<08:15, 1.63it/s]
53%|ββββββ | 903/1710 [07:50<07:47, 1.73it/s]
53%|ββββββ | 904/1710 [07:51<07:18, 1.84it/s]
53%|ββββββ | 905/1710 [07:51<06:44, 1.99it/s]
53%|ββββββ | 906/1710 [07:52<06:32, 2.05it/s]
53%|ββββββ | 907/1710 [07:52<06:15, 2.14it/s]
53%|ββββββ | 908/1710 [07:53<06:47, 1.97it/s]
53%|ββββββ | 909/1710 [07:53<06:41, 1.99it/s]
53%|ββββββ | 910/1710 [07:54<06:20, 2.10it/s]
53%|ββββββ | 911/1710 [07:54<06:38, 2.00it/s]
53%|ββββββ | 912/1710 [07:55<06:58, 1.91it/s]
53%|ββββββ | 913/1710 [07:55<06:27, 2.06it/s]
53%|ββββββ | 914/1710 [07:55<05:57, 2.23it/s]
54%|ββββββ | 915/1710 [07:56<06:04, 2.18it/s]
54%|ββββββ | 916/1710 [07:56<05:44, 2.31it/s]
54%|ββββββ | 917/1710 [07:57<05:30, 2.40it/s]
54%|ββββββ | 918/1710 [07:57<05:12, 2.54it/s]
54%|ββββββ | 919/1710 [07:58<05:43, 2.30it/s]
54%|ββββββ | 920/1710 [07:58<05:45, 2.29it/s]
54%|ββββββ | 921/1710 [07:58<05:41, 2.31it/s]
54%|ββββββ | 922/1710 [07:59<06:45, 1.94it/s]
54%|ββββββ | 923/1710 [08:00<06:24, 2.05it/s]
54%|ββββββ | 924/1710 [08:00<06:09, 2.13it/s]
54%|ββββββ | 925/1710 [08:00<05:41, 2.30it/s]
54%|ββββββ | 926/1710 [08:01<05:57, 2.19it/s]
54%|ββββββ | 927/1710 [08:01<06:03, 2.15it/s]
54%|ββββββ | 928/1710 [08:02<06:14, 2.09it/s]
54%|ββββββ | 929/1710 [08:02<05:51, 2.22it/s]
54%|ββββββ | 930/1710 [08:03<05:34, 2.33it/s]
54%|ββββββ | 931/1710 [08:03<05:30, 2.35it/s]
55%|ββββββ | 932/1710 [08:03<05:29, 2.36it/s]
55%|ββββββ | 933/1710 [08:04<06:02, 2.14it/s]
55%|ββββββ | 934/1710 [08:04<06:01, 2.15it/s]
55%|ββββββ | 935/1710 [08:05<05:49, 2.22it/s]
55%|ββββββ | 936/1710 [08:05<05:35, 2.31it/s]
55%|ββββββ | 937/1710 [08:06<06:00, 2.14it/s]
55%|ββββββ | 938/1710 [08:07<08:03, 1.60it/s]
55%|ββββββ | 939/1710 [08:07<07:56, 1.62it/s]
55%|ββββββ | 940/1710 [08:08<07:14, 1.77it/s]
55%|ββββββ | 941/1710 [08:08<07:01, 1.83it/s]
55%|ββββββ | 942/1710 [08:09<06:21, 2.01it/s]
55%|ββββββ | 943/1710 [08:09<06:01, 2.12it/s]
55%|ββββββ | 944/1710 [08:10<06:22, 2.00it/s]
55%|ββββββ | 945/1710 [08:10<05:49, 2.19it/s]
55%|ββββββ | 946/1710 [08:11<05:49, 2.18it/s]
55%|ββββββ | 947/1710 [08:11<06:53, 1.85it/s]
55%|ββββββ | 948/1710 [08:12<06:45, 1.88it/s]
55%|ββββββ | 949/1710 [08:12<06:26, 1.97it/s]
56%|ββββββ | 950/1710 [08:13<07:00, 1.81it/s]
56%|ββββββ | 951/1710 [08:13<07:05, 1.78it/s]
56%|ββββββ | 952/1710 [08:14<06:54, 1.83it/s]
56%|ββββββ | 953/1710 [08:14<06:01, 2.09it/s]
56%|ββββββ | 954/1710 [08:15<05:49, 2.16it/s]
56%|ββββββ | 955/1710 [08:15<05:30, 2.28it/s]
56%|ββββββ | 956/1710 [08:15<05:10, 2.43it/s]
56%|ββββββ | 957/1710 [08:16<05:13, 2.40it/s]
56%|ββββββ | 958/1710 [08:16<05:25, 2.31it/s]
56%|ββββββ | 959/1710 [08:17<05:57, 2.10it/s]
56%|ββββββ | 960/1710 [08:17<05:30, 2.27it/s]
56%|ββββββ | 961/1710 [08:18<05:24, 2.31it/s]
56%|ββββββ | 962/1710 [08:18<05:26, 2.29it/s]
56%|ββββββ | 963/1710 [08:19<05:29, 2.27it/s]
56%|ββββββ | 964/1710 [08:19<05:09, 2.41it/s]
56%|ββββββ | 965/1710 [08:20<06:07, 2.02it/s]
56%|ββββββ | 966/1710 [08:20<05:42, 2.17it/s]
57%|ββββββ | 967/1710 [08:20<05:14, 2.36it/s]
57%|ββββββ | 968/1710 [08:21<05:08, 2.40it/s]
57%|ββββββ | 969/1710 [08:21<05:04, 2.43it/s]
57%|ββββββ | 970/1710 [08:22<05:14, 2.36it/s]
57%|ββββββ | 971/1710 [08:22<04:55, 2.50it/s]
57%|ββββββ | 972/1710 [08:23<06:03, 2.03it/s]
57%|ββββββ | 973/1710 [08:23<06:12, 1.98it/s]
57%|ββββββ | 974/1710 [08:24<07:20, 1.67it/s]
57%|ββββββ | 975/1710 [08:24<06:34, 1.86it/s]
57%|ββββββ | 976/1710 [08:25<06:18, 1.94it/s]
57%|ββββββ | 977/1710 [08:25<05:57, 2.05it/s]
57%|ββββββ | 978/1710 [08:26<06:02, 2.02it/s]
57%|ββββββ | 979/1710 [08:26<05:29, 2.22it/s]
57%|ββββββ | 980/1710 [08:27<05:33, 2.19it/s]
57%|ββββββ | 981/1710 [08:27<05:57, 2.04it/s]
57%|ββββββ | 982/1710 [08:28<06:16, 1.94it/s]
57%|ββββββ | 983/1710 [08:28<06:18, 1.92it/s]
58%|ββββββ | 984/1710 [08:29<05:58, 2.03it/s]
58%|ββββββ | 985/1710 [08:29<05:48, 2.08it/s]
58%|ββββββ | 986/1710 [08:30<05:43, 2.11it/s]
58%|ββββββ | 987/1710 [08:30<05:17, 2.28it/s]
58%|ββββββ | 988/1710 [08:30<05:01, 2.39it/s]
58%|ββββββ | 989/1710 [08:31<05:23, 2.23it/s]
58%|ββββββ | 990/1710 [08:31<05:09, 2.32it/s]
58%|ββββββ | 991/1710 [08:32<04:58, 2.41it/s]
58%|ββββββ | 992/1710 [08:32<04:56, 2.42it/s]
58%|ββββββ | 993/1710 [08:33<05:11, 2.30it/s]
58%|ββββββ | 994/1710 [08:33<04:50, 2.46it/s]
58%|ββββββ | 995/1710 [08:33<04:38, 2.56it/s]
58%|ββββββ | 996/1710 [08:34<04:56, 2.41it/s]
58%|ββββββ | 997/1710 [08:34<04:58, 2.38it/s]
58%|ββββββ | 998/1710 [08:35<04:50, 2.45it/s]
58%|ββββββ | 999/1710 [08:35<04:52, 2.43it/s]
58%|ββββββ | 1000/1710 [08:36<05:34, 2.13it/s]
58%|ββββββ | 1000/1710 [08:36<05:34, 2.13it/s]
59%|ββββββ | 1001/1710 [08:36<05:06, 2.31it/s]
59%|ββββββ | 1002/1710 [08:36<04:50, 2.44it/s]
59%|ββββββ | 1003/1710 [08:37<04:54, 2.40it/s]
59%|ββββββ | 1004/1710 [08:37<05:19, 2.21it/s]
59%|ββββββ | 1005/1710 [08:38<05:13, 2.25it/s]
59%|ββββββ | 1006/1710 [08:38<05:29, 2.14it/s]
59%|ββββββ | 1007/1710 [08:39<05:19, 2.20it/s]
59%|ββββββ | 1008/1710 [08:39<04:51, 2.41it/s]
59%|ββββββ | 1009/1710 [08:39<05:04, 2.30it/s]
59%|ββββββ | 1010/1710 [08:40<05:09, 2.26it/s]
59%|ββββββ | 1011/1710 [08:40<05:03, 2.30it/s]
59%|ββββββ | 1012/1710 [08:41<04:48, 2.42it/s]
59%|ββββββ | 1013/1710 [08:41<04:32, 2.56it/s]
59%|ββββββ | 1014/1710 [08:41<04:22, 2.65it/s]
59%|ββββββ | 1015/1710 [08:42<04:43, 2.45it/s]
59%|ββββββ | 1016/1710 [08:42<04:40, 2.48it/s]
59%|ββββββ | 1017/1710 [08:43<04:50, 2.38it/s]
60%|ββββββ | 1018/1710 [08:43<05:50, 1.98it/s]
60%|ββββββ | 1019/1710 [08:44<06:38, 1.73it/s]
60%|ββββββ | 1020/1710 [08:45<06:03, 1.90it/s]
60%|ββββββ | 1021/1710 [08:45<05:43, 2.00it/s]
60%|ββββββ | 1022/1710 [08:45<05:22, 2.13it/s]
60%|ββββββ | 1023/1710 [08:46<05:06, 2.24it/s]
60%|ββββββ | 1024/1710 [08:46<05:06, 2.24it/s]
60%|ββββββ | 1025/1710 [08:47<05:00, 2.28it/s]
60%|ββββββ | 1026/1710 [08:47<04:55, 2.32it/s][INFO|trainer.py:811] 2024-09-09 12:23:43,183 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:23:43,185 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:23:43,185 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:23:43,185 >> Batch size = 8
{'eval_loss': 0.21526136994361877, 'eval_precision': 0.6441176470588236, 'eval_recall': 0.7192118226600985, 'eval_f1': 0.6795965865011637, 'eval_accuracy': 0.9465013314511213, 'eval_runtime': 5.9003, 'eval_samples_per_second': 426.928, 'eval_steps_per_second': 53.387, 'epoch': 5.0}
{'loss': 0.0234, 'grad_norm': 1.644018530845642, 'learning_rate': 2.0760233918128656e-05, 'epoch': 5.85}
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:03, 76.95it/s][A
5%|β | 16/315 [00:00<00:04, 73.21it/s][A
8%|β | 24/315 [00:00<00:03, 74.55it/s][A
10%|β | 32/315 [00:00<00:04, 70.51it/s][A
13%|ββ | 40/315 [00:00<00:03, 73.42it/s][A
15%|ββ | 48/315 [00:00<00:03, 73.85it/s][A
18%|ββ | 56/315 [00:00<00:03, 73.02it/s][A
20%|ββ | 64/315 [00:00<00:03, 70.57it/s][A
23%|βββ | 72/315 [00:00<00:03, 72.53it/s][A
25%|βββ | 80/315 [00:01<00:03, 69.09it/s][A
28%|βββ | 87/315 [00:01<00:03, 67.97it/s][A
30%|βββ | 95/315 [00:01<00:03, 69.43it/s][A
32%|ββββ | 102/315 [00:01<00:03, 65.49it/s][A
35%|ββββ | 110/315 [00:01<00:02, 68.44it/s][A
37%|ββββ | 118/315 [00:01<00:02, 69.86it/s][A
40%|ββββ | 126/315 [00:01<00:02, 67.35it/s][A
43%|βββββ | 134/315 [00:01<00:02, 67.80it/s][A
45%|βββββ | 142/315 [00:02<00:02, 68.12it/s][A
48%|βββββ | 150/315 [00:02<00:02, 71.28it/s][A
50%|βββββ | 158/315 [00:02<00:02, 73.42it/s][A
53%|ββββββ | 166/315 [00:02<00:02, 71.60it/s][A
55%|ββββββ | 174/315 [00:02<00:01, 70.67it/s][A
58%|ββββββ | 182/315 [00:02<00:01, 68.25it/s][A
60%|ββββββ | 189/315 [00:02<00:01, 68.29it/s][A
62%|βββββββ | 196/315 [00:02<00:01, 67.83it/s][A
64%|βββββββ | 203/315 [00:02<00:01, 64.48it/s][A
67%|βββββββ | 210/315 [00:03<00:01, 64.78it/s][A
69%|βββββββ | 218/315 [00:03<00:01, 68.51it/s][A
72%|ββββββββ | 226/315 [00:03<00:01, 71.02it/s][A
74%|ββββββββ | 234/315 [00:03<00:01, 73.36it/s][A
77%|ββββββββ | 242/315 [00:03<00:01, 70.52it/s][A
79%|ββββββββ | 250/315 [00:03<00:00, 70.36it/s][A
82%|βββββββββ | 258/315 [00:03<00:00, 68.28it/s][A
84%|βββββββββ | 266/315 [00:03<00:00, 69.51it/s][A
87%|βββββββββ | 275/315 [00:03<00:00, 72.89it/s][A
90%|βββββββββ | 283/315 [00:04<00:00, 74.04it/s][A
92%|ββββββββββ| 291/315 [00:04<00:00, 70.70it/s][A
95%|ββββββββββ| 299/315 [00:04<00:00, 69.87it/s][A
97%|ββββββββββ| 307/315 [00:04<00:00, 71.23it/s][A
100%|ββββββββββ| 315/315 [00:04<00:00, 70.17it/s][A
[A
60%|ββββββ | 1026/1710 [08:53<04:55, 2.32it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 70.17it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:23:49,149 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1026
[INFO|configuration_utils.py:472] 2024-09-09 12:23:49,150 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1026/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:23:50,155 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1026/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:23:50,156 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1026/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:23:50,156 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1026/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:23:53,206 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:23:53,207 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
60%|ββββββ | 1027/1710 [08:58<39:37, 3.48s/it]
60%|ββββββ | 1028/1710 [08:58<29:05, 2.56s/it]
60%|ββββββ | 1029/1710 [08:58<21:41, 1.91s/it]
60%|ββββββ | 1030/1710 [08:59<16:26, 1.45s/it]
60%|ββββββ | 1031/1710 [08:59<12:41, 1.12s/it]
60%|ββββββ | 1032/1710 [09:00<10:32, 1.07it/s]
60%|ββββββ | 1033/1710 [09:00<08:59, 1.25it/s]
60%|ββββββ | 1034/1710 [09:01<07:56, 1.42it/s]
61%|ββββββ | 1035/1710 [09:01<07:15, 1.55it/s]
61%|ββββββ | 1036/1710 [09:01<06:09, 1.82it/s]
61%|ββββββ | 1037/1710 [09:02<05:33, 2.02it/s]
61%|ββββββ | 1038/1710 [09:02<05:15, 2.13it/s]
61%|ββββββ | 1039/1710 [09:03<04:51, 2.30it/s]
61%|ββββββ | 1040/1710 [09:03<05:13, 2.14it/s]
61%|ββββββ | 1041/1710 [09:04<04:55, 2.27it/s]
61%|ββββββ | 1042/1710 [09:04<04:48, 2.32it/s]
61%|ββββββ | 1043/1710 [09:04<04:38, 2.39it/s]
61%|ββββββ | 1044/1710 [09:05<05:08, 2.16it/s]
61%|ββββββ | 1045/1710 [09:05<04:50, 2.29it/s]
61%|ββββββ | 1046/1710 [09:06<04:43, 2.35it/s]
61%|ββββββ | 1047/1710 [09:06<04:48, 2.29it/s]
61%|βββββββ | 1048/1710 [09:07<04:46, 2.31it/s]
61%|βββββββ | 1049/1710 [09:07<04:50, 2.27it/s]
61%|βββββββ | 1050/1710 [09:07<04:38, 2.37it/s]
61%|βββββββ | 1051/1710 [09:08<04:37, 2.38it/s]
62%|βββββββ | 1052/1710 [09:08<04:19, 2.53it/s]
62%|βββββββ | 1053/1710 [09:09<04:18, 2.54it/s]
62%|βββββββ | 1054/1710 [09:09<04:27, 2.45it/s]
62%|βββββββ | 1055/1710 [09:10<04:53, 2.23it/s]
62%|βββββββ | 1056/1710 [09:10<04:24, 2.47it/s]
62%|βββββββ | 1057/1710 [09:10<04:37, 2.36it/s]
62%|βββββββ | 1058/1710 [09:11<04:57, 2.19it/s]
62%|βββββββ | 1059/1710 [09:11<05:03, 2.15it/s]
62%|βββββββ | 1060/1710 [09:12<05:09, 2.10it/s]
62%|βββββββ | 1061/1710 [09:12<05:11, 2.09it/s]
62%|βββββββ | 1062/1710 [09:13<04:58, 2.17it/s]
62%|βββββββ | 1063/1710 [09:13<05:08, 2.09it/s]
62%|βββββββ | 1064/1710 [09:14<04:40, 2.30it/s]
62%|βββββββ | 1065/1710 [09:14<04:20, 2.48it/s]
62%|βββββββ | 1066/1710 [09:14<04:29, 2.39it/s]
62%|βββββββ | 1067/1710 [09:15<04:32, 2.36it/s]
62%|βββββββ | 1068/1710 [09:15<05:05, 2.10it/s]
63%|βββββββ | 1069/1710 [09:16<04:32, 2.35it/s]
63%|βββββββ | 1070/1710 [09:16<04:28, 2.39it/s]
63%|βββββββ | 1071/1710 [09:16<04:18, 2.47it/s]
63%|βββββββ | 1072/1710 [09:17<05:07, 2.08it/s]
63%|βββββββ | 1073/1710 [09:18<05:44, 1.85it/s]
63%|βββββββ | 1074/1710 [09:18<05:55, 1.79it/s]
63%|βββββββ | 1075/1710 [09:19<05:28, 1.93it/s]
63%|βββββββ | 1076/1710 [09:19<05:03, 2.09it/s]
63%|βββββββ | 1077/1710 [09:20<04:43, 2.23it/s]
63%|βββββββ | 1078/1710 [09:20<04:22, 2.41it/s]
63%|βββββββ | 1079/1710 [09:20<04:22, 2.40it/s]
63%|βββββββ | 1080/1710 [09:21<04:25, 2.37it/s]
63%|βββββββ | 1081/1710 [09:21<04:50, 2.17it/s]
63%|βββββββ | 1082/1710 [09:22<04:39, 2.24it/s]
63%|βββββββ | 1083/1710 [09:22<04:30, 2.32it/s]
63%|βββββββ | 1084/1710 [09:23<04:32, 2.29it/s]
63%|βββββββ | 1085/1710 [09:23<04:11, 2.49it/s]
64%|βββββββ | 1086/1710 [09:23<04:00, 2.59it/s]
64%|βββββββ | 1087/1710 [09:24<04:19, 2.40it/s]
64%|βββββββ | 1088/1710 [09:24<04:35, 2.26it/s]
64%|βββββββ | 1089/1710 [09:25<05:35, 1.85it/s]
64%|βββββββ | 1090/1710 [09:25<05:04, 2.04it/s]
64%|βββββββ | 1091/1710 [09:26<04:29, 2.29it/s]
64%|βββββββ | 1092/1710 [09:26<05:02, 2.04it/s]
64%|βββββββ | 1093/1710 [09:27<05:13, 1.97it/s]
64%|βββββββ | 1094/1710 [09:27<04:56, 2.08it/s]
64%|βββββββ | 1095/1710 [09:28<04:38, 2.21it/s]
64%|βββββββ | 1096/1710 [09:28<05:23, 1.90it/s]
64%|βββββββ | 1097/1710 [09:29<04:57, 2.06it/s]
64%|βββββββ | 1098/1710 [09:30<06:33, 1.56it/s]
64%|βββββββ | 1099/1710 [09:30<05:41, 1.79it/s]
64%|βββββββ | 1100/1710 [09:31<05:33, 1.83it/s]
64%|βββββββ | 1101/1710 [09:31<05:38, 1.80it/s]
64%|βββββββ | 1102/1710 [09:32<05:19, 1.90it/s]
65%|βββββββ | 1103/1710 [09:32<04:44, 2.13it/s]
65%|βββββββ | 1104/1710 [09:32<04:31, 2.23it/s]
65%|βββββββ | 1105/1710 [09:33<04:31, 2.23it/s]
65%|βββββββ | 1106/1710 [09:33<04:24, 2.28it/s]
65%|βββββββ | 1107/1710 [09:34<04:28, 2.25it/s]
65%|βββββββ | 1108/1710 [09:34<04:13, 2.37it/s]
65%|βββββββ | 1109/1710 [09:35<04:31, 2.22it/s]
65%|βββββββ | 1110/1710 [09:35<04:38, 2.16it/s]
65%|βββββββ | 1111/1710 [09:36<05:03, 1.97it/s]
65%|βββββββ | 1112/1710 [09:36<05:04, 1.96it/s]
65%|βββββββ | 1113/1710 [09:37<04:49, 2.06it/s]
65%|βββββββ | 1114/1710 [09:37<04:18, 2.30it/s]
65%|βββββββ | 1115/1710 [09:37<04:20, 2.28it/s]
65%|βββββββ | 1116/1710 [09:38<04:15, 2.32it/s]
65%|βββββββ | 1117/1710 [09:38<04:12, 2.35it/s]
65%|βββββββ | 1118/1710 [09:39<04:17, 2.30it/s]
65%|βββββββ | 1119/1710 [09:39<04:29, 2.20it/s]
65%|βββββββ | 1120/1710 [09:40<04:28, 2.20it/s]
66%|βββββββ | 1121/1710 [09:40<04:45, 2.06it/s]
66%|βββββββ | 1122/1710 [09:41<04:44, 2.07it/s]
66%|βββββββ | 1123/1710 [09:41<04:30, 2.17it/s]
66%|βββββββ | 1124/1710 [09:42<04:18, 2.26it/s]
66%|βββββββ | 1125/1710 [09:42<04:41, 2.07it/s]
66%|βββββββ | 1126/1710 [09:43<04:29, 2.16it/s]
66%|βββββββ | 1127/1710 [09:43<04:21, 2.23it/s]
66%|βββββββ | 1128/1710 [09:43<04:41, 2.07it/s]
66%|βββββββ | 1129/1710 [09:44<04:42, 2.06it/s]
66%|βββββββ | 1130/1710 [09:44<04:21, 2.22it/s]
66%|βββββββ | 1131/1710 [09:45<04:12, 2.29it/s]
66%|βββββββ | 1132/1710 [09:45<04:42, 2.05it/s]
66%|βββββββ | 1133/1710 [09:46<04:31, 2.12it/s]
66%|βββββββ | 1134/1710 [09:46<04:02, 2.37it/s]
66%|βββββββ | 1135/1710 [09:47<04:03, 2.36it/s]
66%|βββββββ | 1136/1710 [09:47<03:54, 2.45it/s]
66%|βββββββ | 1137/1710 [09:48<05:01, 1.90it/s]
67%|βββββββ | 1138/1710 [09:48<04:45, 2.01it/s]
67%|βββββββ | 1139/1710 [09:49<04:49, 1.97it/s]
67%|βββββββ | 1140/1710 [09:49<04:36, 2.06it/s]
67%|βββββββ | 1141/1710 [09:49<04:15, 2.23it/s]
67%|βββββββ | 1142/1710 [09:50<04:12, 2.25it/s]
67%|βββββββ | 1143/1710 [09:50<04:04, 2.32it/s]
67%|βββββββ | 1144/1710 [09:51<04:03, 2.33it/s]
67%|βββββββ | 1145/1710 [09:51<03:47, 2.48it/s]
67%|βββββββ | 1146/1710 [09:51<03:48, 2.47it/s]
67%|βββββββ | 1147/1710 [09:52<03:51, 2.43it/s]
67%|βββββββ | 1148/1710 [09:52<04:10, 2.25it/s]
67%|βββββββ | 1149/1710 [09:53<04:03, 2.30it/s]
67%|βββββββ | 1150/1710 [09:53<03:52, 2.41it/s]
67%|βββββββ | 1151/1710 [09:54<03:53, 2.40it/s]
67%|βββββββ | 1152/1710 [09:54<04:14, 2.19it/s]
67%|βββββββ | 1153/1710 [09:55<04:16, 2.17it/s]
67%|βββββββ | 1154/1710 [09:55<04:38, 1.99it/s]
68%|βββββββ | 1155/1710 [09:56<04:29, 2.06it/s]
68%|βββββββ | 1156/1710 [09:56<04:20, 2.13it/s]
68%|βββββββ | 1157/1710 [09:57<04:09, 2.22it/s]
68%|βββββββ | 1158/1710 [09:57<04:18, 2.13it/s]
68%|βββββββ | 1159/1710 [09:57<04:10, 2.20it/s]
68%|βββββββ | 1160/1710 [09:58<04:29, 2.04it/s]
68%|βββββββ | 1161/1710 [09:59<05:03, 1.81it/s]
68%|βββββββ | 1162/1710 [09:59<04:31, 2.02it/s]
68%|βββββββ | 1163/1710 [10:00<04:23, 2.07it/s]
68%|βββββββ | 1164/1710 [10:00<04:11, 2.17it/s]
68%|βββββββ | 1165/1710 [10:00<03:45, 2.42it/s]
68%|βββββββ | 1166/1710 [10:01<03:48, 2.38it/s]
68%|βββββββ | 1167/1710 [10:01<04:29, 2.01it/s]
68%|βββββββ | 1168/1710 [10:02<05:20, 1.69it/s]
68%|βββββββ | 1169/1710 [10:03<04:50, 1.86it/s]
68%|βββββββ | 1170/1710 [10:03<04:29, 2.01it/s]
68%|βββββββ | 1171/1710 [10:03<04:15, 2.11it/s]
69%|βββββββ | 1172/1710 [10:04<04:12, 2.13it/s]
69%|βββββββ | 1173/1710 [10:04<04:26, 2.02it/s]
69%|βββββββ | 1174/1710 [10:05<04:57, 1.80it/s]
69%|βββββββ | 1175/1710 [10:06<05:18, 1.68it/s]
69%|βββββββ | 1176/1710 [10:06<04:45, 1.87it/s]
69%|βββββββ | 1177/1710 [10:07<04:22, 2.03it/s]
69%|βββββββ | 1178/1710 [10:07<04:10, 2.13it/s]
69%|βββββββ | 1179/1710 [10:08<04:16, 2.07it/s]
69%|βββββββ | 1180/1710 [10:08<03:59, 2.22it/s]
69%|βββββββ | 1181/1710 [10:08<03:46, 2.34it/s]
69%|βββββββ | 1182/1710 [10:09<03:45, 2.34it/s]
69%|βββββββ | 1183/1710 [10:09<03:46, 2.33it/s]
69%|βββββββ | 1184/1710 [10:10<03:36, 2.43it/s]
69%|βββββββ | 1185/1710 [10:10<03:53, 2.24it/s]
69%|βββββββ | 1186/1710 [10:10<03:48, 2.29it/s]
69%|βββββββ | 1187/1710 [10:11<04:04, 2.14it/s]
69%|βββββββ | 1188/1710 [10:12<04:12, 2.07it/s]
70%|βββββββ | 1189/1710 [10:12<03:57, 2.20it/s]
70%|βββββββ | 1190/1710 [10:12<03:51, 2.24it/s]
70%|βββββββ | 1191/1710 [10:13<03:57, 2.18it/s]
70%|βββββββ | 1192/1710 [10:13<03:55, 2.20it/s]
70%|βββββββ | 1193/1710 [10:14<03:55, 2.19it/s]
70%|βββββββ | 1194/1710 [10:14<03:50, 2.23it/s]
70%|βββββββ | 1195/1710 [10:15<03:40, 2.33it/s]
70%|βββββββ | 1196/1710 [10:15<03:29, 2.45it/s]
70%|βββββββ | 1197/1710 [10:15<03:20, 2.56it/s][INFO|trainer.py:811] 2024-09-09 12:25:11,389 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:25:11,391 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:25:11,392 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:25:11,392 >> Batch size = 8
{'eval_loss': 0.24975360929965973, 'eval_precision': 0.6461383139828369, 'eval_recall': 0.7006020799124247, 'eval_f1': 0.6722689075630252, 'eval_accuracy': 0.9469825788443645, 'eval_runtime': 5.9627, 'eval_samples_per_second': 422.461, 'eval_steps_per_second': 52.829, 'epoch': 6.0}
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:03, 78.25it/s][A
5%|β | 16/315 [00:00<00:03, 75.52it/s][A
8%|β | 24/315 [00:00<00:03, 77.00it/s][A
10%|β | 32/315 [00:00<00:03, 72.63it/s][A
13%|ββ | 41/315 [00:00<00:03, 75.89it/s][A
16%|ββ | 49/315 [00:00<00:03, 75.18it/s][A
18%|ββ | 57/315 [00:00<00:03, 75.40it/s][A
21%|ββ | 65/315 [00:00<00:03, 72.21it/s][A
23%|βββ | 73/315 [00:00<00:03, 74.33it/s][A
26%|βββ | 81/315 [00:01<00:03, 70.75it/s][A
28%|βββ | 89/315 [00:01<00:03, 67.39it/s][A
31%|βββ | 97/315 [00:01<00:03, 67.28it/s][A
33%|ββββ | 105/315 [00:01<00:03, 68.96it/s][A
36%|ββββ | 113/315 [00:01<00:02, 70.65it/s][A
38%|ββββ | 121/315 [00:01<00:02, 69.24it/s][A
41%|ββββ | 129/315 [00:01<00:02, 70.23it/s][A
43%|βββββ | 137/315 [00:01<00:02, 69.65it/s][A
46%|βββββ | 144/315 [00:02<00:02, 69.41it/s][A
49%|βββββ | 153/315 [00:02<00:02, 73.45it/s][A
51%|βββββ | 161/315 [00:02<00:02, 72.05it/s][A
54%|ββββββ | 169/315 [00:02<00:02, 71.92it/s][A
56%|ββββββ | 177/315 [00:02<00:01, 71.59it/s][A
59%|ββββββ | 185/315 [00:02<00:01, 69.29it/s][A
61%|ββββββ | 192/315 [00:02<00:01, 68.95it/s][A
63%|βββββββ | 199/315 [00:02<00:01, 66.07it/s][A
65%|βββββββ | 206/315 [00:02<00:01, 64.74it/s][A
68%|βββββββ | 214/315 [00:03<00:01, 68.47it/s][A
70%|βββββββ | 222/315 [00:03<00:01, 70.45it/s][A
73%|ββββββββ | 231/315 [00:03<00:01, 73.74it/s][A
76%|ββββββββ | 239/315 [00:03<00:01, 75.02it/s][A
78%|ββββββββ | 247/315 [00:03<00:00, 70.37it/s][A
81%|ββββββββ | 255/315 [00:03<00:00, 69.03it/s][A
83%|βββββββββ | 263/315 [00:03<00:00, 70.69it/s][A
86%|βββββββββ | 271/315 [00:03<00:00, 72.53it/s][A
89%|βββββββββ | 280/315 [00:03<00:00, 75.54it/s][A
91%|ββββββββββ| 288/315 [00:04<00:00, 72.37it/s][A
94%|ββββββββββ| 296/315 [00:04<00:00, 70.67it/s][A
97%|ββββββββββ| 304/315 [00:04<00:00, 71.86it/s][A
99%|ββββββββββ| 312/315 [00:04<00:00, 72.00it/s][A
[A
70%|βββββββ | 1197/1710 [10:21<03:20, 2.56it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 72.00it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:25:17,290 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1197
[INFO|configuration_utils.py:472] 2024-09-09 12:25:17,291 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1197/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:25:18,342 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1197/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:25:18,343 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1197/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:25:18,343 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1197/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:25:23,192 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:25:23,192 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
70%|βββββββ | 1198/1710 [10:28<34:36, 4.06s/it]
70%|βββββββ | 1199/1710 [10:28<25:27, 2.99s/it]
70%|βββββββ | 1200/1710 [10:29<18:46, 2.21s/it]
70%|βββββββ | 1201/1710 [10:29<14:22, 1.69s/it]
70%|βββββββ | 1202/1710 [10:30<11:19, 1.34s/it]
70%|βββββββ | 1203/1710 [10:30<09:48, 1.16s/it]
70%|βββββββ | 1204/1710 [10:31<07:49, 1.08it/s]
70%|βββββββ | 1205/1710 [10:31<06:28, 1.30it/s]
71%|βββββββ | 1206/1710 [10:32<05:30, 1.53it/s]
71%|βββββββ | 1207/1710 [10:32<04:58, 1.69it/s]
71%|βββββββ | 1208/1710 [10:33<04:29, 1.86it/s]
71%|βββββββ | 1209/1710 [10:33<03:58, 2.10it/s]
71%|βββββββ | 1210/1710 [10:34<04:30, 1.85it/s]
71%|βββββββ | 1211/1710 [10:34<04:30, 1.84it/s]
71%|βββββββ | 1212/1710 [10:35<04:14, 1.96it/s]
71%|βββββββ | 1213/1710 [10:35<03:54, 2.12it/s]
71%|βββββββ | 1214/1710 [10:35<03:33, 2.32it/s]
71%|βββββββ | 1215/1710 [10:36<03:30, 2.35it/s]
71%|βββββββ | 1216/1710 [10:36<03:18, 2.48it/s]
71%|βββββββ | 1217/1710 [10:36<03:23, 2.43it/s]
71%|βββββββ | 1218/1710 [10:37<03:20, 2.46it/s]
71%|ββββββββ | 1219/1710 [10:37<03:11, 2.57it/s]
71%|ββββββββ | 1220/1710 [10:38<03:19, 2.46it/s]
71%|ββββββββ | 1221/1710 [10:38<03:47, 2.15it/s]
71%|ββββββββ | 1222/1710 [10:39<03:42, 2.19it/s]
72%|ββββββββ | 1223/1710 [10:39<03:37, 2.24it/s]
72%|ββββββββ | 1224/1710 [10:40<04:36, 1.76it/s]
72%|ββββββββ | 1225/1710 [10:41<04:44, 1.70it/s]
72%|ββββββββ | 1226/1710 [10:41<04:11, 1.93it/s]
72%|ββββββββ | 1227/1710 [10:41<04:07, 1.95it/s]
72%|ββββββββ | 1228/1710 [10:42<03:48, 2.11it/s]
72%|ββββββββ | 1229/1710 [10:42<03:47, 2.12it/s]
72%|ββββββββ | 1230/1710 [10:43<03:40, 2.18it/s]
72%|ββββββββ | 1231/1710 [10:43<03:35, 2.22it/s]
72%|ββββββββ | 1232/1710 [10:44<03:55, 2.03it/s]
72%|ββββββββ | 1233/1710 [10:44<03:41, 2.15it/s]
72%|ββββββββ | 1234/1710 [10:45<03:56, 2.01it/s]
72%|ββββββββ | 1235/1710 [10:45<03:45, 2.11it/s]
72%|ββββββββ | 1236/1710 [10:46<03:47, 2.08it/s]
72%|ββββββββ | 1237/1710 [10:46<03:33, 2.22it/s]
72%|ββββββββ | 1238/1710 [10:46<03:14, 2.43it/s]
72%|ββββββββ | 1239/1710 [10:47<03:12, 2.45it/s]
73%|ββββββββ | 1240/1710 [10:47<03:16, 2.39it/s]
73%|ββββββββ | 1241/1710 [10:48<03:14, 2.42it/s]
73%|ββββββββ | 1242/1710 [10:48<03:04, 2.54it/s]
73%|ββββββββ | 1243/1710 [10:48<03:08, 2.48it/s]
73%|ββββββββ | 1244/1710 [10:49<03:16, 2.37it/s]
73%|ββββββββ | 1245/1710 [10:49<03:35, 2.16it/s]
73%|ββββββββ | 1246/1710 [10:50<03:33, 2.17it/s]
73%|ββββββββ | 1247/1710 [10:50<03:31, 2.19it/s]
73%|ββββββββ | 1248/1710 [10:51<03:20, 2.30it/s]
73%|ββββββββ | 1249/1710 [10:51<03:06, 2.47it/s]
73%|ββββββββ | 1250/1710 [10:52<03:21, 2.28it/s]
73%|ββββββββ | 1251/1710 [10:52<03:47, 2.02it/s]
73%|ββββββββ | 1252/1710 [10:53<03:43, 2.05it/s]
73%|ββββββββ | 1253/1710 [10:53<03:34, 2.13it/s]
73%|ββββββββ | 1254/1710 [10:53<03:23, 2.24it/s]
73%|ββββββββ | 1255/1710 [10:54<03:18, 2.29it/s]
73%|ββββββββ | 1256/1710 [10:54<03:43, 2.03it/s]
74%|ββββββββ | 1257/1710 [10:55<03:44, 2.02it/s]
74%|ββββββββ | 1258/1710 [10:55<03:28, 2.17it/s]
74%|ββββββββ | 1259/1710 [10:56<03:36, 2.08it/s]
74%|ββββββββ | 1260/1710 [10:56<03:41, 2.03it/s]
74%|ββββββββ | 1261/1710 [10:57<03:42, 2.02it/s]
74%|ββββββββ | 1262/1710 [10:57<03:43, 2.00it/s]
74%|ββββββββ | 1263/1710 [10:58<03:36, 2.07it/s]
74%|ββββββββ | 1264/1710 [10:58<03:20, 2.22it/s]
74%|ββββββββ | 1265/1710 [10:59<03:15, 2.27it/s]
74%|ββββββββ | 1266/1710 [11:00<04:15, 1.74it/s]
74%|ββββββββ | 1267/1710 [11:00<03:44, 1.97it/s]
74%|ββββββββ | 1268/1710 [11:00<03:25, 2.15it/s]
74%|ββββββββ | 1269/1710 [11:01<03:19, 2.21it/s]
74%|ββββββββ | 1270/1710 [11:01<03:33, 2.06it/s]
74%|ββββββββ | 1271/1710 [11:02<03:16, 2.23it/s]
74%|ββββββββ | 1272/1710 [11:02<03:21, 2.17it/s]
74%|ββββββββ | 1273/1710 [11:03<03:22, 2.16it/s]
75%|ββββββββ | 1274/1710 [11:03<03:18, 2.20it/s]
75%|ββββββββ | 1275/1710 [11:04<03:33, 2.03it/s]
75%|ββββββββ | 1276/1710 [11:04<03:24, 2.12it/s]
75%|ββββββββ | 1277/1710 [11:05<03:39, 1.98it/s]
75%|ββββββββ | 1278/1710 [11:05<04:03, 1.77it/s]
75%|ββββββββ | 1279/1710 [11:06<03:33, 2.02it/s]
75%|ββββββββ | 1280/1710 [11:06<03:45, 1.91it/s]
75%|ββββββββ | 1281/1710 [11:07<03:38, 1.96it/s]
75%|ββββββββ | 1282/1710 [11:07<03:26, 2.07it/s]
75%|ββββββββ | 1283/1710 [11:08<03:24, 2.09it/s]
75%|ββββββββ | 1284/1710 [11:08<03:06, 2.28it/s]
75%|ββββββββ | 1285/1710 [11:08<03:07, 2.27it/s]
75%|ββββββββ | 1286/1710 [11:09<03:02, 2.32it/s]
75%|ββββββββ | 1287/1710 [11:09<03:18, 2.13it/s]
75%|ββββββββ | 1288/1710 [11:10<03:08, 2.23it/s]
75%|ββββββββ | 1289/1710 [11:10<03:10, 2.22it/s]
75%|ββββββββ | 1290/1710 [11:11<02:57, 2.36it/s]
75%|ββββββββ | 1291/1710 [11:11<02:49, 2.47it/s]
76%|ββββββββ | 1292/1710 [11:11<02:44, 2.54it/s]
76%|ββββββββ | 1293/1710 [11:12<02:53, 2.40it/s]
76%|ββββββββ | 1294/1710 [11:12<02:59, 2.32it/s]
76%|ββββββββ | 1295/1710 [11:13<02:57, 2.33it/s]
76%|ββββββββ | 1296/1710 [11:13<03:00, 2.29it/s]
76%|ββββββββ | 1297/1710 [11:13<02:55, 2.35it/s]
76%|ββββββββ | 1298/1710 [11:14<02:49, 2.42it/s]
76%|ββββββββ | 1299/1710 [11:14<02:43, 2.51it/s]
76%|ββββββββ | 1300/1710 [11:15<02:40, 2.56it/s]
76%|ββββββββ | 1301/1710 [11:15<02:41, 2.53it/s]
76%|ββββββββ | 1302/1710 [11:16<03:00, 2.26it/s]
76%|ββββββββ | 1303/1710 [11:16<02:59, 2.27it/s]
76%|ββββββββ | 1304/1710 [11:16<02:55, 2.32it/s]
76%|ββββββββ | 1305/1710 [11:17<03:11, 2.12it/s]
76%|ββββββββ | 1306/1710 [11:18<03:20, 2.01it/s]
76%|ββββββββ | 1307/1710 [11:18<03:08, 2.14it/s]
76%|ββββββββ | 1308/1710 [11:18<03:01, 2.22it/s]
77%|ββββββββ | 1309/1710 [11:19<02:57, 2.26it/s]
77%|ββββββββ | 1310/1710 [11:19<02:58, 2.24it/s]
77%|ββββββββ | 1311/1710 [11:20<02:55, 2.28it/s]
77%|ββββββββ | 1312/1710 [11:20<03:02, 2.18it/s]
77%|ββββββββ | 1313/1710 [11:21<02:56, 2.25it/s]
77%|ββββββββ | 1314/1710 [11:21<02:48, 2.35it/s]
77%|ββββββββ | 1315/1710 [11:21<02:49, 2.33it/s]
77%|ββββββββ | 1316/1710 [11:22<02:36, 2.51it/s]
77%|ββββββββ | 1317/1710 [11:22<02:36, 2.50it/s]
77%|ββββββββ | 1318/1710 [11:23<02:49, 2.31it/s]
77%|ββββββββ | 1319/1710 [11:23<03:01, 2.15it/s]
77%|ββββββββ | 1320/1710 [11:24<02:56, 2.21it/s]
77%|ββββββββ | 1321/1710 [11:24<02:49, 2.30it/s]
77%|ββββββββ | 1322/1710 [11:25<03:01, 2.13it/s]
77%|ββββββββ | 1323/1710 [11:25<03:35, 1.80it/s]
77%|ββββββββ | 1324/1710 [11:26<03:09, 2.04it/s]
77%|ββββββββ | 1325/1710 [11:26<03:05, 2.07it/s]
78%|ββββββββ | 1326/1710 [11:27<03:05, 2.07it/s]
78%|ββββββββ | 1327/1710 [11:27<02:47, 2.29it/s]
78%|ββββββββ | 1328/1710 [11:27<02:53, 2.20it/s]
78%|ββββββββ | 1329/1710 [11:28<03:16, 1.94it/s]
78%|ββββββββ | 1330/1710 [11:29<03:11, 1.99it/s]
78%|ββββββββ | 1331/1710 [11:29<03:10, 1.99it/s]
78%|ββββββββ | 1332/1710 [11:29<02:49, 2.23it/s]
78%|ββββββββ | 1333/1710 [11:30<02:57, 2.13it/s]
78%|ββββββββ | 1334/1710 [11:30<02:48, 2.23it/s]
78%|ββββββββ | 1335/1710 [11:31<02:46, 2.26it/s]
78%|ββββββββ | 1336/1710 [11:31<02:34, 2.43it/s]
78%|ββββββββ | 1337/1710 [11:31<02:28, 2.52it/s]
78%|ββββββββ | 1338/1710 [11:32<02:30, 2.47it/s]
78%|ββββββββ | 1339/1710 [11:32<02:26, 2.53it/s]
78%|ββββββββ | 1340/1710 [11:33<02:22, 2.60it/s]
78%|ββββββββ | 1341/1710 [11:33<02:35, 2.37it/s]
78%|ββββββββ | 1342/1710 [11:33<02:36, 2.35it/s]
79%|ββββββββ | 1343/1710 [11:34<02:21, 2.60it/s]
79%|ββββββββ | 1344/1710 [11:34<02:28, 2.46it/s]
79%|ββββββββ | 1345/1710 [11:35<02:28, 2.45it/s]
79%|ββββββββ | 1346/1710 [11:35<02:24, 2.52it/s]
79%|ββββββββ | 1347/1710 [11:35<02:32, 2.37it/s]
79%|ββββββββ | 1348/1710 [11:36<02:27, 2.45it/s]
79%|ββββββββ | 1349/1710 [11:36<02:30, 2.39it/s]
79%|ββββββββ | 1350/1710 [11:37<02:42, 2.22it/s]
79%|ββββββββ | 1351/1710 [11:37<02:45, 2.16it/s]
79%|ββββββββ | 1352/1710 [11:38<02:54, 2.05it/s]
79%|ββββββββ | 1353/1710 [11:39<03:29, 1.70it/s]
79%|ββββββββ | 1354/1710 [11:39<03:37, 1.63it/s]
79%|ββββββββ | 1355/1710 [11:40<03:16, 1.80it/s]
79%|ββββββββ | 1356/1710 [11:40<02:59, 1.98it/s]
79%|ββββββββ | 1357/1710 [11:41<02:43, 2.16it/s]
79%|ββββββββ | 1358/1710 [11:41<02:46, 2.12it/s]
79%|ββββββββ | 1359/1710 [11:42<02:55, 2.00it/s]
80%|ββββββββ | 1360/1710 [11:42<02:40, 2.18it/s]
80%|ββββββββ | 1361/1710 [11:42<02:37, 2.22it/s]
80%|ββββββββ | 1362/1710 [11:43<02:28, 2.35it/s]
80%|ββββββββ | 1363/1710 [11:43<02:34, 2.24it/s]
80%|ββββββββ | 1364/1710 [11:44<02:32, 2.27it/s]
80%|ββββββββ | 1365/1710 [11:44<02:35, 2.23it/s]
80%|ββββββββ | 1366/1710 [11:45<03:36, 1.59it/s]
80%|ββββββββ | 1367/1710 [11:46<03:14, 1.76it/s]
80%|ββββββββ | 1368/1710 [11:46<02:55, 1.95it/s][INFO|trainer.py:811] 2024-09-09 12:26:42,159 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:26:42,162 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:26:42,162 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:26:42,162 >> Batch size = 8
{'eval_loss': 0.2653313875198364, 'eval_precision': 0.636231884057971, 'eval_recall': 0.7208538587848933, 'eval_f1': 0.6759045419553503, 'eval_accuracy': 0.9461804998556258, 'eval_runtime': 5.8972, 'eval_samples_per_second': 427.151, 'eval_steps_per_second': 53.415, 'epoch': 7.0}
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:03, 78.29it/s][A
5%|β | 16/315 [00:00<00:03, 75.02it/s][A
8%|β | 24/315 [00:00<00:03, 76.45it/s][A
10%|β | 32/315 [00:00<00:03, 71.97it/s][A
13%|ββ | 41/315 [00:00<00:03, 75.79it/s][A
16%|ββ | 49/315 [00:00<00:03, 75.07it/s][A
18%|ββ | 57/315 [00:00<00:03, 75.43it/s][A
21%|ββ | 65/315 [00:00<00:03, 72.50it/s][A
23%|βββ | 73/315 [00:00<00:03, 74.63it/s][A
26%|βββ | 81/315 [00:01<00:03, 70.79it/s][A
28%|βββ | 89/315 [00:01<00:03, 67.40it/s][A
31%|βββ | 97/315 [00:01<00:03, 67.18it/s][A
33%|ββββ | 104/315 [00:01<00:03, 67.92it/s][A
36%|ββββ | 112/315 [00:01<00:02, 69.60it/s][A
38%|ββββ | 120/315 [00:01<00:02, 69.34it/s][A
40%|ββββ | 127/315 [00:01<00:02, 69.05it/s][A
43%|βββββ | 134/315 [00:01<00:02, 68.57it/s][A
45%|βββββ | 141/315 [00:01<00:02, 68.63it/s][A
47%|βββββ | 149/315 [00:02<00:02, 71.03it/s][A
50%|βββββ | 157/315 [00:02<00:02, 73.48it/s][A
52%|ββββββ | 165/315 [00:02<00:02, 72.18it/s][A
55%|ββββββ | 173/315 [00:02<00:01, 71.55it/s][A
57%|ββββββ | 181/315 [00:02<00:01, 68.79it/s][A
60%|ββββββ | 188/315 [00:02<00:01, 69.11it/s][A
62%|βββββββ | 195/315 [00:02<00:01, 67.25it/s][A
64%|βββββββ | 202/315 [00:02<00:01, 65.91it/s][A
66%|βββββββ | 209/315 [00:02<00:01, 65.27it/s][A
69%|βββββββ | 217/315 [00:03<00:01, 68.10it/s][A
71%|ββββββββ | 225/315 [00:03<00:01, 70.76it/s][A
74%|ββββββββ | 234/315 [00:03<00:01, 74.22it/s][A
77%|ββββββββ | 242/315 [00:03<00:01, 71.48it/s][A
79%|ββββββββ | 250/315 [00:03<00:00, 71.21it/s][A
82%|βββββββββ | 258/315 [00:03<00:00, 68.93it/s][A
84%|βββββββββ | 266/315 [00:03<00:00, 70.07it/s][A
87%|βββββββββ | 275/315 [00:03<00:00, 73.61it/s][A
90%|βββββββββ | 283/315 [00:03<00:00, 74.67it/s][A
92%|ββββββββββ| 291/315 [00:04<00:00, 72.08it/s][A
95%|ββββββββββ| 299/315 [00:04<00:00, 70.98it/s][A
97%|ββββββββββ| 307/315 [00:04<00:00, 71.83it/s][A
100%|ββββββββββ| 315/315 [00:04<00:00, 70.52it/s][A
[A
80%|ββββββββ | 1368/1710 [11:52<02:55, 1.95it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 70.52it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:26:48,070 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1368
[INFO|configuration_utils.py:472] 2024-09-09 12:26:48,072 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1368/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:26:49,101 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1368/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:26:49,102 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1368/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:26:49,103 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1368/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:26:52,194 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:26:52,195 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
80%|ββββββββ | 1369/1710 [11:56<19:51, 3.49s/it]
80%|ββββββββ | 1370/1710 [11:57<14:28, 2.56s/it]
80%|ββββββββ | 1371/1710 [11:57<11:06, 1.97s/it]
80%|ββββββββ | 1372/1710 [11:58<08:31, 1.51s/it]
80%|ββββββββ | 1373/1710 [11:59<07:28, 1.33s/it]
80%|ββββββββ | 1374/1710 [11:59<05:54, 1.06s/it]
80%|ββββββββ | 1375/1710 [12:00<04:53, 1.14it/s]
80%|ββββββββ | 1376/1710 [12:00<04:04, 1.37it/s]
81%|ββββββββ | 1377/1710 [12:00<03:26, 1.61it/s]
81%|ββββββββ | 1378/1710 [12:01<02:59, 1.85it/s]
81%|ββββββββ | 1379/1710 [12:01<02:45, 2.00it/s]
81%|ββββββββ | 1380/1710 [12:02<02:33, 2.15it/s]
81%|ββββββββ | 1381/1710 [12:02<02:32, 2.16it/s]
81%|ββββββββ | 1382/1710 [12:03<02:40, 2.05it/s]
81%|ββββββββ | 1383/1710 [12:03<02:37, 2.08it/s]
81%|ββββββββ | 1384/1710 [12:04<02:38, 2.06it/s]
81%|ββββββββ | 1385/1710 [12:04<02:31, 2.14it/s]
81%|ββββββββ | 1386/1710 [12:04<02:37, 2.06it/s]
81%|ββββββββ | 1387/1710 [12:05<02:28, 2.18it/s]
81%|ββββββββ | 1388/1710 [12:05<02:26, 2.20it/s]
81%|ββββββββ | 1389/1710 [12:06<02:26, 2.19it/s]
81%|βββββββββ | 1390/1710 [12:06<02:17, 2.32it/s]
81%|βββββββββ | 1391/1710 [12:07<02:20, 2.27it/s]
81%|βββββββββ | 1392/1710 [12:07<02:18, 2.30it/s]
81%|βββββββββ | 1393/1710 [12:07<02:16, 2.32it/s]
82%|βββββββββ | 1394/1710 [12:08<02:18, 2.28it/s]
82%|βββββββββ | 1395/1710 [12:08<02:13, 2.36it/s]
82%|βββββββββ | 1396/1710 [12:09<02:16, 2.29it/s]
82%|βββββββββ | 1397/1710 [12:09<02:42, 1.93it/s]
82%|βββββββββ | 1398/1710 [12:10<02:31, 2.06it/s]
82%|βββββββββ | 1399/1710 [12:11<02:50, 1.82it/s]
82%|βββββββββ | 1400/1710 [12:11<02:38, 1.96it/s]
82%|βββββββββ | 1401/1710 [12:11<02:22, 2.16it/s]
82%|βββββββββ | 1402/1710 [12:12<02:24, 2.13it/s]
82%|βββββββββ | 1403/1710 [12:12<02:20, 2.18it/s]
82%|βββββββββ | 1404/1710 [12:13<02:21, 2.16it/s]
82%|βββββββββ | 1405/1710 [12:13<02:30, 2.03it/s]
82%|βββββββββ | 1406/1710 [12:14<02:24, 2.10it/s]
82%|βββββββββ | 1407/1710 [12:15<02:52, 1.76it/s]
82%|βββββββββ | 1408/1710 [12:16<03:35, 1.40it/s]
82%|βββββββββ | 1409/1710 [12:16<03:47, 1.32it/s]
82%|βββββββββ | 1410/1710 [12:17<03:23, 1.48it/s]
83%|βββββββββ | 1411/1710 [12:17<02:55, 1.71it/s]
83%|βββββββββ | 1412/1710 [12:18<02:33, 1.94it/s]
83%|βββββββββ | 1413/1710 [12:18<02:23, 2.08it/s]
83%|βββββββββ | 1414/1710 [12:18<02:17, 2.16it/s]
83%|βββββββββ | 1415/1710 [12:19<02:15, 2.17it/s]
83%|βββββββββ | 1416/1710 [12:19<02:07, 2.30it/s]
83%|βββββββββ | 1417/1710 [12:20<01:57, 2.49it/s]
83%|βββββββββ | 1418/1710 [12:20<01:58, 2.46it/s]
83%|βββββββββ | 1419/1710 [12:20<01:54, 2.54it/s]
83%|βββββββββ | 1420/1710 [12:21<02:08, 2.26it/s]
83%|βββββββββ | 1421/1710 [12:21<02:10, 2.21it/s]
83%|βββββββββ | 1422/1710 [12:22<02:06, 2.27it/s]
83%|βββββββββ | 1423/1710 [12:22<01:59, 2.41it/s]
83%|βββββββββ | 1424/1710 [12:23<02:01, 2.36it/s]
83%|βββββββββ | 1425/1710 [12:23<01:57, 2.43it/s]
83%|βββββββββ | 1426/1710 [12:24<02:04, 2.29it/s]
83%|βββββββββ | 1427/1710 [12:24<02:07, 2.23it/s]
84%|βββββββββ | 1428/1710 [12:24<01:56, 2.42it/s]
84%|βββββββββ | 1429/1710 [12:25<02:06, 2.23it/s]
84%|βββββββββ | 1430/1710 [12:25<02:16, 2.05it/s]
84%|βββββββββ | 1431/1710 [12:26<02:13, 2.10it/s]
84%|βββββββββ | 1432/1710 [12:26<02:07, 2.18it/s]
84%|βββββββββ | 1433/1710 [12:27<01:57, 2.35it/s]
84%|βββββββββ | 1434/1710 [12:27<02:11, 2.10it/s]
84%|βββββββββ | 1435/1710 [12:28<02:07, 2.16it/s]
84%|βββββββββ | 1436/1710 [12:28<02:02, 2.24it/s]
84%|βββββββββ | 1437/1710 [12:28<01:56, 2.35it/s]
84%|βββββββββ | 1438/1710 [12:29<01:52, 2.43it/s]
84%|βββββββββ | 1439/1710 [12:29<01:56, 2.33it/s]
84%|βββββββββ | 1440/1710 [12:30<02:07, 2.11it/s]
84%|βββββββββ | 1441/1710 [12:30<02:08, 2.09it/s]
84%|βββββββββ | 1442/1710 [12:31<02:10, 2.06it/s]
84%|βββββββββ | 1443/1710 [12:31<02:04, 2.15it/s]
84%|βββββββββ | 1444/1710 [12:32<01:54, 2.31it/s]
85%|βββββββββ | 1445/1710 [12:32<01:48, 2.45it/s]
85%|βββββββββ | 1446/1710 [12:33<01:57, 2.24it/s]
85%|βββββββββ | 1447/1710 [12:33<01:56, 2.25it/s]
85%|βββββββββ | 1448/1710 [12:33<01:47, 2.44it/s]
85%|βββββββββ | 1449/1710 [12:34<01:46, 2.46it/s]
85%|βββββββββ | 1450/1710 [12:34<01:52, 2.31it/s]
85%|βββββββββ | 1451/1710 [12:35<02:04, 2.09it/s]
85%|βββββββββ | 1452/1710 [12:35<02:05, 2.06it/s]
85%|βββββββββ | 1453/1710 [12:36<02:00, 2.12it/s]
85%|βββββββββ | 1454/1710 [12:36<01:53, 2.26it/s]
85%|βββββββββ | 1455/1710 [12:37<01:51, 2.28it/s]
85%|βββββββββ | 1456/1710 [12:37<01:45, 2.41it/s]
85%|βββββββββ | 1457/1710 [12:37<01:47, 2.36it/s]
85%|βββββββββ | 1458/1710 [12:38<01:44, 2.41it/s]
85%|βββββββββ | 1459/1710 [12:38<01:47, 2.33it/s]
85%|βββββββββ | 1460/1710 [12:39<01:46, 2.34it/s]
85%|βββββββββ | 1461/1710 [12:39<01:53, 2.19it/s]
85%|βββββββββ | 1462/1710 [12:40<02:08, 1.94it/s]
86%|βββββββββ | 1463/1710 [12:40<01:57, 2.10it/s]
86%|βββββββββ | 1464/1710 [12:41<01:51, 2.21it/s]
86%|βββββββββ | 1465/1710 [12:41<01:52, 2.18it/s]
86%|βββββββββ | 1466/1710 [12:41<01:46, 2.28it/s]
86%|βββββββββ | 1467/1710 [12:42<01:45, 2.30it/s]
86%|βββββββββ | 1468/1710 [12:42<01:41, 2.38it/s]
86%|βββββββββ | 1469/1710 [12:43<01:59, 2.02it/s]
86%|βββββββββ | 1470/1710 [12:44<02:15, 1.77it/s]
86%|βββββββββ | 1471/1710 [12:44<02:11, 1.82it/s]
86%|βββββββββ | 1472/1710 [12:45<02:07, 1.86it/s]
86%|βββββββββ | 1473/1710 [12:45<02:00, 1.96it/s]
86%|βββββββββ | 1474/1710 [12:46<01:53, 2.09it/s]
86%|βββββββββ | 1475/1710 [12:46<01:43, 2.28it/s]
86%|βββββββββ | 1476/1710 [12:46<01:42, 2.29it/s]
86%|βββββββββ | 1477/1710 [12:47<01:37, 2.38it/s]
86%|βββββββββ | 1478/1710 [12:47<01:37, 2.38it/s]
86%|βββββββββ | 1479/1710 [12:48<01:39, 2.32it/s]
87%|βββββββββ | 1480/1710 [12:48<01:39, 2.30it/s]
87%|βββββββββ | 1481/1710 [12:49<01:56, 1.97it/s]
87%|βββββββββ | 1482/1710 [12:49<01:47, 2.12it/s]
87%|βββββββββ | 1483/1710 [12:50<01:46, 2.13it/s]
87%|βββββββββ | 1484/1710 [12:50<01:42, 2.21it/s]
87%|βββββββββ | 1485/1710 [12:51<01:58, 1.89it/s]
87%|βββββββββ | 1486/1710 [12:51<01:48, 2.07it/s]
87%|βββββββββ | 1487/1710 [12:52<01:54, 1.96it/s]
87%|βββββββββ | 1488/1710 [12:52<01:42, 2.16it/s]
87%|βββββββββ | 1489/1710 [12:52<01:37, 2.28it/s]
87%|βββββββββ | 1490/1710 [12:53<02:03, 1.79it/s]
87%|βββββββββ | 1491/1710 [12:54<01:48, 2.02it/s]
87%|βββββββββ | 1492/1710 [12:54<01:42, 2.13it/s]
87%|βββββββββ | 1493/1710 [12:54<01:40, 2.15it/s]
87%|βββββββββ | 1494/1710 [12:55<01:41, 2.13it/s]
87%|βββββββββ | 1495/1710 [12:55<01:38, 2.19it/s]
87%|βββββββββ | 1496/1710 [12:56<01:30, 2.37it/s]
88%|βββββββββ | 1497/1710 [12:56<01:30, 2.35it/s]
88%|βββββββββ | 1498/1710 [12:57<01:30, 2.35it/s]
88%|βββββββββ | 1499/1710 [12:57<01:59, 1.77it/s]
88%|βββββββββ | 1500/1710 [12:58<01:50, 1.90it/s]
88%|βββββββββ | 1500/1710 [12:58<01:50, 1.90it/s]
88%|βββββββββ | 1501/1710 [12:58<01:48, 1.92it/s]
88%|βββββββββ | 1502/1710 [12:59<01:37, 2.13it/s]
88%|βββββββββ | 1503/1710 [12:59<01:27, 2.37it/s]
88%|βββββββββ | 1504/1710 [13:00<01:32, 2.24it/s]
88%|βββββββββ | 1505/1710 [13:00<01:29, 2.29it/s]
88%|βββββββββ | 1506/1710 [13:01<01:37, 2.09it/s]
88%|βββββββββ | 1507/1710 [13:01<01:32, 2.20it/s]
88%|βββββββββ | 1508/1710 [13:01<01:24, 2.39it/s]
88%|βββββββββ | 1509/1710 [13:02<01:18, 2.57it/s]
88%|βββββββββ | 1510/1710 [13:02<01:15, 2.64it/s]
88%|βββββββββ | 1511/1710 [13:02<01:17, 2.58it/s]
88%|βββββββββ | 1512/1710 [13:03<01:26, 2.29it/s]
88%|βββββββββ | 1513/1710 [13:03<01:29, 2.21it/s]
89%|βββββββββ | 1514/1710 [13:04<01:20, 2.43it/s]
89%|βββββββββ | 1515/1710 [13:04<01:19, 2.47it/s]
89%|βββββββββ | 1516/1710 [13:05<01:24, 2.30it/s]
89%|βββββββββ | 1517/1710 [13:05<01:21, 2.37it/s]
89%|βββββββββ | 1518/1710 [13:05<01:20, 2.40it/s]
89%|βββββββββ | 1519/1710 [13:06<01:20, 2.36it/s]
89%|βββββββββ | 1520/1710 [13:06<01:17, 2.46it/s]
89%|βββββββββ | 1521/1710 [13:07<01:28, 2.13it/s]
89%|βββββββββ | 1522/1710 [13:07<01:33, 2.01it/s]
89%|βββββββββ | 1523/1710 [13:08<01:32, 2.01it/s]
89%|βββββββββ | 1524/1710 [13:08<01:28, 2.10it/s]
89%|βββββββββ | 1525/1710 [13:09<01:27, 2.11it/s]
89%|βββββββββ | 1526/1710 [13:09<01:21, 2.25it/s]
89%|βββββββββ | 1527/1710 [13:09<01:16, 2.38it/s]
89%|βββββββββ | 1528/1710 [13:10<01:15, 2.41it/s]
89%|βββββββββ | 1529/1710 [13:10<01:15, 2.39it/s]
89%|βββββββββ | 1530/1710 [13:11<01:12, 2.47it/s]
90%|βββββββββ | 1531/1710 [13:11<01:08, 2.61it/s]
90%|βββββββββ | 1532/1710 [13:11<01:13, 2.42it/s]
90%|βββββββββ | 1533/1710 [13:12<01:21, 2.17it/s]
90%|βββββββββ | 1534/1710 [13:13<01:27, 2.02it/s]
90%|βββββββββ | 1535/1710 [13:13<01:23, 2.11it/s]
90%|βββββββββ | 1536/1710 [13:14<01:22, 2.11it/s]
90%|βββββββββ | 1537/1710 [13:14<01:19, 2.18it/s]
90%|βββββββββ | 1538/1710 [13:14<01:17, 2.23it/s]
90%|βββββββββ | 1539/1710 [13:15<01:15, 2.26it/s][INFO|trainer.py:811] 2024-09-09 12:28:10,968 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:28:10,970 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:28:10,970 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:28:10,970 >> Batch size = 8
{'eval_loss': 0.28080618381500244, 'eval_precision': 0.6529382219989954, 'eval_recall': 0.7115489874110563, 'eval_f1': 0.680984808800419, 'eval_accuracy': 0.9473354935994097, 'eval_runtime': 5.9073, 'eval_samples_per_second': 426.421, 'eval_steps_per_second': 53.324, 'epoch': 8.0}
{'loss': 0.0082, 'grad_norm': 0.22467799484729767, 'learning_rate': 6.140350877192982e-06, 'epoch': 8.77}
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:03, 78.15it/s][A
5%|β | 16/315 [00:00<00:03, 75.10it/s][A
8%|β | 24/315 [00:00<00:03, 76.23it/s][A
10%|β | 32/315 [00:00<00:03, 72.03it/s][A
13%|ββ | 41/315 [00:00<00:03, 75.31it/s][A
16%|ββ | 49/315 [00:00<00:03, 74.22it/s][A
18%|ββ | 57/315 [00:00<00:03, 74.53it/s][A
21%|ββ | 65/315 [00:00<00:03, 71.62it/s][A
23%|βββ | 73/315 [00:00<00:03, 73.27it/s][A
26%|βββ | 81/315 [00:01<00:03, 69.11it/s][A
28%|βββ | 88/315 [00:01<00:03, 66.88it/s][A
30%|βββ | 96/315 [00:01<00:03, 70.07it/s][A
33%|ββββ | 104/315 [00:01<00:03, 67.39it/s][A
36%|ββββ | 112/315 [00:01<00:02, 69.18it/s][A
38%|ββββ | 120/315 [00:01<00:02, 68.81it/s][A
40%|ββββ | 127/315 [00:01<00:02, 68.85it/s][A
43%|βββββ | 134/315 [00:01<00:02, 68.15it/s][A
45%|βββββ | 141/315 [00:01<00:02, 68.66it/s][A
47%|βββββ | 149/315 [00:02<00:02, 71.11it/s][A
50%|βββββ | 157/315 [00:02<00:02, 73.67it/s][A
52%|ββββββ | 165/315 [00:02<00:02, 72.41it/s][A
55%|ββββββ | 173/315 [00:02<00:01, 71.77it/s][A
57%|ββββββ | 181/315 [00:02<00:01, 69.01it/s][A
60%|ββββββ | 189/315 [00:02<00:01, 68.89it/s][A
62%|βββββββ | 196/315 [00:02<00:01, 67.87it/s][A
64%|βββββββ | 203/315 [00:02<00:01, 65.16it/s][A
67%|βββββββ | 210/315 [00:03<00:01, 65.43it/s][A
69%|βββββββ | 218/315 [00:03<00:01, 69.24it/s][A
72%|ββββββββ | 226/315 [00:03<00:01, 71.30it/s][A
75%|ββββββββ | 235/315 [00:03<00:01, 74.27it/s][A
77%|ββββββββ | 243/315 [00:03<00:01, 70.36it/s][A
80%|ββββββββ | 251/315 [00:03<00:00, 70.27it/s][A
82%|βββββββββ | 259/315 [00:03<00:00, 69.06it/s][A
85%|βββββββββ | 267/315 [00:03<00:00, 70.31it/s][A
88%|βββββββββ | 276/315 [00:03<00:00, 73.18it/s][A
90%|βββββββββ | 284/315 [00:04<00:00, 73.60it/s][A
93%|ββββββββββ| 292/315 [00:04<00:00, 70.96it/s][A
95%|ββββββββββ| 300/315 [00:04<00:00, 70.32it/s][A
98%|ββββββββββ| 308/315 [00:04<00:00, 70.86it/s][A
[A
90%|βββββββββ | 1539/1710 [13:21<01:15, 2.26it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 70.86it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:28:16,907 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1539
[INFO|configuration_utils.py:472] 2024-09-09 12:28:16,908 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1539/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:28:17,937 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1539/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:28:17,938 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1539/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:28:17,939 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1539/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:28:22,554 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:28:22,555 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
90%|βββββββββ | 1540/1710 [13:27<11:03, 3.90s/it]
90%|βββββββββ | 1541/1710 [13:27<08:00, 2.85s/it]
90%|βββββββββ | 1542/1710 [13:28<05:53, 2.11s/it]
90%|βββββββββ | 1543/1710 [13:28<04:32, 1.63s/it]
90%|βββββββββ | 1544/1710 [13:29<03:37, 1.31s/it]
90%|βββββββββ | 1545/1710 [13:29<02:50, 1.03s/it]
90%|βββββββββ | 1546/1710 [13:29<02:18, 1.18it/s]
90%|βββββββββ | 1547/1710 [13:30<01:55, 1.41it/s]
91%|βββββββββ | 1548/1710 [13:30<01:37, 1.66it/s]
91%|βββββββββ | 1549/1710 [13:31<01:27, 1.84it/s]
91%|βββββββββ | 1550/1710 [13:31<01:19, 2.01it/s]
91%|βββββββββ | 1551/1710 [13:32<01:31, 1.74it/s]
91%|βββββββββ | 1552/1710 [13:32<01:23, 1.90it/s]
91%|βββββββββ | 1553/1710 [13:33<01:15, 2.09it/s]
91%|βββββββββ | 1554/1710 [13:33<01:17, 2.00it/s]
91%|βββββββββ | 1555/1710 [13:34<01:16, 2.02it/s]
91%|βββββββββ | 1556/1710 [13:34<01:12, 2.13it/s]
91%|βββββββββ | 1557/1710 [13:34<01:10, 2.17it/s]
91%|βββββββββ | 1558/1710 [13:35<01:05, 2.31it/s]
91%|βββββββββ | 1559/1710 [13:35<01:05, 2.29it/s]
91%|βββββββββ | 1560/1710 [13:36<01:04, 2.34it/s]
91%|ββββββββββ| 1561/1710 [13:36<01:03, 2.35it/s]
91%|ββββββββββ| 1562/1710 [13:36<01:00, 2.44it/s]
91%|ββββββββββ| 1563/1710 [13:37<00:58, 2.50it/s]
91%|ββββββββββ| 1564/1710 [13:37<00:58, 2.52it/s]
92%|ββββββββββ| 1565/1710 [13:38<00:59, 2.44it/s]
92%|ββββββββββ| 1566/1710 [13:38<00:56, 2.55it/s]
92%|ββββββββββ| 1567/1710 [13:39<01:06, 2.14it/s]
92%|ββββββββββ| 1568/1710 [13:40<01:28, 1.60it/s]
92%|ββββββββββ| 1569/1710 [13:40<01:26, 1.63it/s]
92%|ββββββββββ| 1570/1710 [13:41<01:13, 1.90it/s]
92%|ββββββββββ| 1571/1710 [13:41<01:04, 2.16it/s]
92%|ββββββββββ| 1572/1710 [13:42<01:26, 1.60it/s]
92%|ββββββββββ| 1573/1710 [13:42<01:13, 1.86it/s]
92%|ββββββββββ| 1574/1710 [13:43<01:08, 1.99it/s]
92%|ββββββββββ| 1575/1710 [13:43<01:04, 2.09it/s]
92%|ββββββββββ| 1576/1710 [13:43<01:03, 2.13it/s]
92%|ββββββββββ| 1577/1710 [13:44<00:57, 2.32it/s]
92%|ββββββββββ| 1578/1710 [13:44<00:53, 2.45it/s]
92%|ββββββββββ| 1579/1710 [13:45<00:55, 2.34it/s]
92%|ββββββββββ| 1580/1710 [13:45<00:55, 2.33it/s]
92%|ββββββββββ| 1581/1710 [13:45<00:55, 2.32it/s]
93%|ββββββββββ| 1582/1710 [13:46<00:54, 2.36it/s]
93%|ββββββββββ| 1583/1710 [13:46<00:54, 2.34it/s]
93%|ββββββββββ| 1584/1710 [13:47<00:54, 2.33it/s]
93%|ββββββββββ| 1585/1710 [13:47<01:01, 2.03it/s]
93%|ββββββββββ| 1586/1710 [13:48<00:58, 2.12it/s]
93%|ββββββββββ| 1587/1710 [13:48<00:54, 2.27it/s]
93%|ββββββββββ| 1588/1710 [13:49<00:54, 2.25it/s]
93%|ββββββββββ| 1589/1710 [13:49<01:01, 1.98it/s]
93%|ββββββββββ| 1590/1710 [13:50<01:04, 1.86it/s]
93%|ββββββββββ| 1591/1710 [13:50<01:02, 1.91it/s]
93%|ββββββββββ| 1592/1710 [13:51<00:56, 2.11it/s]
93%|ββββββββββ| 1593/1710 [13:51<00:53, 2.18it/s]
93%|ββββββββββ| 1594/1710 [13:52<00:53, 2.18it/s]
93%|ββββββββββ| 1595/1710 [13:52<01:02, 1.84it/s]
93%|ββββββββββ| 1596/1710 [13:53<00:57, 1.99it/s]
93%|ββββββββββ| 1597/1710 [13:53<00:54, 2.07it/s]
93%|ββββββββββ| 1598/1710 [13:54<00:52, 2.13it/s]
94%|ββββββββββ| 1599/1710 [13:54<00:49, 2.25it/s]
94%|ββββββββββ| 1600/1710 [13:55<00:54, 2.03it/s]
94%|ββββββββββ| 1601/1710 [13:55<00:59, 1.84it/s]
94%|ββββββββββ| 1602/1710 [13:56<00:57, 1.87it/s]
94%|ββββββββββ| 1603/1710 [13:56<00:53, 2.00it/s]
94%|ββββββββββ| 1604/1710 [13:57<00:50, 2.11it/s]
94%|ββββββββββ| 1605/1710 [13:57<00:50, 2.07it/s]
94%|ββββββββββ| 1606/1710 [13:58<00:48, 2.16it/s]
94%|ββββββββββ| 1607/1710 [13:58<00:52, 1.97it/s]
94%|ββββββββββ| 1608/1710 [13:59<00:52, 1.94it/s]
94%|ββββββββββ| 1609/1710 [13:59<00:47, 2.13it/s]
94%|ββββββββββ| 1610/1710 [14:00<00:50, 2.00it/s]
94%|ββββββββββ| 1611/1710 [14:00<00:51, 1.93it/s]
94%|ββββββββββ| 1612/1710 [14:01<00:46, 2.09it/s]
94%|ββββββββββ| 1613/1710 [14:01<00:48, 2.01it/s]
94%|ββββββββββ| 1614/1710 [14:02<00:46, 2.08it/s]
94%|ββββββββββ| 1615/1710 [14:02<00:45, 2.08it/s]
95%|ββββββββββ| 1616/1710 [14:02<00:42, 2.22it/s]
95%|ββββββββββ| 1617/1710 [14:03<00:42, 2.19it/s]
95%|ββββββββββ| 1618/1710 [14:03<00:42, 2.18it/s]
95%|ββββββββββ| 1619/1710 [14:04<00:40, 2.22it/s]
95%|ββββββββββ| 1620/1710 [14:04<00:41, 2.17it/s]
95%|ββββββββββ| 1621/1710 [14:05<00:37, 2.39it/s]
95%|ββββββββββ| 1622/1710 [14:05<00:36, 2.38it/s]
95%|ββββββββββ| 1623/1710 [14:05<00:36, 2.36it/s]
95%|ββββββββββ| 1624/1710 [14:06<00:33, 2.53it/s]
95%|ββββββββββ| 1625/1710 [14:06<00:33, 2.53it/s]
95%|ββββββββββ| 1626/1710 [14:07<00:32, 2.60it/s]
95%|ββββββββββ| 1627/1710 [14:07<00:35, 2.33it/s]
95%|ββββββββββ| 1628/1710 [14:08<00:34, 2.36it/s]
95%|ββββββββββ| 1629/1710 [14:08<00:33, 2.43it/s]
95%|ββββββββββ| 1630/1710 [14:08<00:31, 2.54it/s]
95%|ββββββββββ| 1631/1710 [14:09<00:32, 2.40it/s]
95%|ββββββββββ| 1632/1710 [14:09<00:31, 2.46it/s]
95%|ββββββββββ| 1633/1710 [14:10<00:33, 2.28it/s]
96%|ββββββββββ| 1634/1710 [14:10<00:31, 2.38it/s]
96%|ββββββββββ| 1635/1710 [14:11<00:33, 2.22it/s]
96%|ββββββββββ| 1636/1710 [14:11<00:32, 2.26it/s]
96%|ββββββββββ| 1637/1710 [14:11<00:31, 2.30it/s]
96%|ββββββββββ| 1638/1710 [14:12<00:31, 2.30it/s]
96%|ββββββββββ| 1639/1710 [14:12<00:29, 2.40it/s]
96%|ββββββββββ| 1640/1710 [14:13<00:29, 2.38it/s]
96%|ββββββββββ| 1641/1710 [14:13<00:29, 2.36it/s]
96%|ββββββββββ| 1642/1710 [14:13<00:28, 2.38it/s]
96%|ββββββββββ| 1643/1710 [14:14<00:29, 2.25it/s]
96%|ββββββββββ| 1644/1710 [14:14<00:26, 2.47it/s]
96%|ββββββββββ| 1645/1710 [14:15<00:26, 2.49it/s]
96%|ββββββββββ| 1646/1710 [14:15<00:25, 2.55it/s]
96%|ββββββββββ| 1647/1710 [14:15<00:26, 2.41it/s]
96%|ββββββββββ| 1648/1710 [14:16<00:26, 2.38it/s]
96%|ββββββββββ| 1649/1710 [14:16<00:25, 2.39it/s]
96%|ββββββββββ| 1650/1710 [14:17<00:25, 2.36it/s]
97%|ββββββββββ| 1651/1710 [14:17<00:24, 2.40it/s]
97%|ββββββββββ| 1652/1710 [14:18<00:24, 2.34it/s]
97%|ββββββββββ| 1653/1710 [14:18<00:24, 2.30it/s]
97%|ββββββββββ| 1654/1710 [14:18<00:24, 2.32it/s]
97%|ββββββββββ| 1655/1710 [14:19<00:23, 2.33it/s]
97%|ββββββββββ| 1656/1710 [14:19<00:24, 2.17it/s]
97%|ββββββββββ| 1657/1710 [14:20<00:24, 2.16it/s]
97%|ββββββββββ| 1658/1710 [14:20<00:23, 2.23it/s]
97%|ββββββββββ| 1659/1710 [14:21<00:21, 2.36it/s]
97%|ββββββββββ| 1660/1710 [14:21<00:22, 2.27it/s]
97%|ββββββββββ| 1661/1710 [14:22<00:20, 2.36it/s]
97%|ββββββββββ| 1662/1710 [14:22<00:21, 2.20it/s]
97%|ββββββββββ| 1663/1710 [14:22<00:20, 2.34it/s]
97%|ββββββββββ| 1664/1710 [14:23<00:19, 2.36it/s]
97%|ββββββββββ| 1665/1710 [14:23<00:20, 2.17it/s]
97%|ββββββββββ| 1666/1710 [14:24<00:18, 2.33it/s]
97%|ββββββββββ| 1667/1710 [14:24<00:18, 2.32it/s]
98%|ββββββββββ| 1668/1710 [14:25<00:19, 2.15it/s]
98%|ββββββββββ| 1669/1710 [14:25<00:17, 2.31it/s]
98%|ββββββββββ| 1670/1710 [14:25<00:16, 2.40it/s]
98%|ββββββββββ| 1671/1710 [14:26<00:17, 2.27it/s]
98%|ββββββββββ| 1672/1710 [14:26<00:15, 2.41it/s]
98%|ββββββββββ| 1673/1710 [14:27<00:14, 2.57it/s]
98%|ββββββββββ| 1674/1710 [14:27<00:13, 2.68it/s]
98%|ββββββββββ| 1675/1710 [14:27<00:14, 2.45it/s]
98%|ββββββββββ| 1676/1710 [14:28<00:13, 2.54it/s]
98%|ββββββββββ| 1677/1710 [14:29<00:16, 2.04it/s]
98%|ββββββββββ| 1678/1710 [14:29<00:15, 2.06it/s]
98%|ββββββββββ| 1679/1710 [14:29<00:14, 2.16it/s]
98%|ββββββββββ| 1680/1710 [14:30<00:13, 2.24it/s]
98%|ββββββββββ| 1681/1710 [14:30<00:12, 2.30it/s]
98%|ββββββββββ| 1682/1710 [14:31<00:12, 2.25it/s]
98%|ββββββββββ| 1683/1710 [14:31<00:11, 2.35it/s]
98%|ββββββββββ| 1684/1710 [14:32<00:14, 1.86it/s]
99%|ββββββββββ| 1685/1710 [14:32<00:13, 1.88it/s]
99%|ββββββββββ| 1686/1710 [14:33<00:11, 2.01it/s]
99%|ββββββββββ| 1687/1710 [14:33<00:12, 1.86it/s]
99%|ββββββββββ| 1688/1710 [14:34<00:10, 2.01it/s]
99%|ββββββββββ| 1689/1710 [14:34<00:09, 2.12it/s]
99%|ββββββββββ| 1690/1710 [14:35<00:09, 2.14it/s]
99%|ββββββββββ| 1691/1710 [14:35<00:09, 2.02it/s]
99%|ββββββββββ| 1692/1710 [14:36<00:08, 2.16it/s]
99%|ββββββββββ| 1693/1710 [14:36<00:07, 2.18it/s]
99%|ββββββββββ| 1694/1710 [14:37<00:07, 2.03it/s]
99%|ββββββββββ| 1695/1710 [14:37<00:07, 1.89it/s]
99%|ββββββββββ| 1696/1710 [14:38<00:06, 2.10it/s]
99%|ββββββββββ| 1697/1710 [14:38<00:05, 2.26it/s]
99%|ββββββββββ| 1698/1710 [14:39<00:05, 2.00it/s]
99%|ββββββββββ| 1699/1710 [14:39<00:05, 2.06it/s]
99%|ββββββββββ| 1700/1710 [14:40<00:04, 2.05it/s]
99%|ββββββββββ| 1701/1710 [14:40<00:05, 1.71it/s]
100%|ββββββββββ| 1702/1710 [14:41<00:04, 1.76it/s]
100%|ββββββββββ| 1703/1710 [14:42<00:04, 1.70it/s]
100%|ββββββββββ| 1704/1710 [14:42<00:03, 1.93it/s]
100%|ββββββββββ| 1705/1710 [14:43<00:02, 1.80it/s]
100%|ββββββββββ| 1706/1710 [14:43<00:02, 1.89it/s]
100%|ββββββββββ| 1707/1710 [14:43<00:01, 2.08it/s]
100%|ββββββββββ| 1708/1710 [14:44<00:00, 2.09it/s]
100%|ββββββββββ| 1709/1710 [14:45<00:00, 1.75it/s]
100%|ββββββββββ| 1710/1710 [14:45<00:00, 1.94it/s][INFO|trainer.py:3503] 2024-09-09 12:29:41,232 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1710
[INFO|configuration_utils.py:472] 2024-09-09 12:29:41,233 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1710/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:29:42,287 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1710/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:29:42,288 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1710/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:29:42,289 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1710/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:29:47,798 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:29:47,799 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
[INFO|trainer.py:811] 2024-09-09 12:29:47,847 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:29:47,850 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:29:47,850 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:29:47,850 >> Batch size = 8
{'eval_loss': 0.2917279005050659, 'eval_precision': 0.6458022851465475, 'eval_recall': 0.7115489874110563, 'eval_f1': 0.6770833333333333, 'eval_accuracy': 0.9466938304084186, 'eval_runtime': 5.9353, 'eval_samples_per_second': 424.408, 'eval_steps_per_second': 53.072, 'epoch': 9.0}
0%| | 0/315 [00:00<?, ?it/s][A
3%|β | 8/315 [00:00<00:03, 78.48it/s][A
5%|β | 16/315 [00:00<00:03, 75.15it/s][A
8%|β | 24/315 [00:00<00:03, 76.67it/s][A
10%|β | 32/315 [00:00<00:03, 72.34it/s][A
13%|ββ | 41/315 [00:00<00:03, 75.90it/s][A
16%|ββ | 49/315 [00:00<00:03, 74.64it/s][A
18%|ββ | 57/315 [00:00<00:03, 74.70it/s][A
21%|ββ | 65/315 [00:00<00:03, 71.45it/s][A
23%|βββ | 73/315 [00:00<00:03, 73.28it/s][A
26%|βββ | 81/315 [00:01<00:03, 69.66it/s][A
28%|βββ | 89/315 [00:01<00:03, 66.63it/s][A
31%|βββ | 97/315 [00:01<00:03, 66.80it/s][A
33%|ββββ | 104/315 [00:01<00:03, 67.55it/s][A
36%|ββββ | 112/315 [00:01<00:02, 70.16it/s][A
38%|ββββ | 120/315 [00:01<00:02, 69.45it/s][A
40%|ββββ | 127/315 [00:01<00:02, 68.94it/s][A
43%|βββββ | 134/315 [00:01<00:02, 68.70it/s][A
45%|βββββ | 141/315 [00:01<00:02, 69.03it/s][A
47%|βββββ | 149/315 [00:02<00:02, 71.83it/s][A
50%|βββββ | 158/315 [00:02<00:02, 74.77it/s][A
53%|ββββββ | 166/315 [00:02<00:02, 71.53it/s][A
55%|ββββββ | 174/315 [00:02<00:01, 71.33it/s][A
58%|ββββββ | 182/315 [00:02<00:01, 68.58it/s][A
60%|ββββββ | 189/315 [00:02<00:01, 68.46it/s][A
62%|βββββββ | 196/315 [00:02<00:01, 67.83it/s][A
64%|βββββββ | 203/315 [00:02<00:01, 64.56it/s][A
67%|βββββββ | 210/315 [00:03<00:01, 63.19it/s][A
69%|βββββββ | 217/315 [00:03<00:01, 64.49it/s][A
71%|ββββββββ | 225/315 [00:03<00:01, 67.99it/s][A
74%|ββββββββ | 234/315 [00:03<00:01, 72.14it/s][A
77%|ββββββββ | 242/315 [00:03<00:01, 70.05it/s][A
79%|ββββββββ | 250/315 [00:03<00:00, 70.23it/s][A
82%|βββββββββ | 258/315 [00:03<00:00, 68.35it/s][A
84%|βββββββββ | 266/315 [00:03<00:00, 69.52it/s][A
87%|βββββββββ | 274/315 [00:03<00:00, 72.33it/s][A
90%|βββββββββ | 283/315 [00:04<00:00, 74.24it/s][A
92%|ββββββββββ| 291/315 [00:04<00:00, 71.78it/s][A
95%|ββββββββββ| 299/315 [00:04<00:00, 70.81it/s][A
97%|ββββββββββ| 307/315 [00:04<00:00, 71.90it/s][A
100%|ββββββββββ| 315/315 [00:04<00:00, 70.36it/s][A
[A
100%|ββββββββββ| 1710/1710 [14:58<00:00, 1.94it/s]
100%|ββββββββββ| 315/315 [00:05<00:00, 70.36it/s][A
[A[INFO|trainer.py:3503] 2024-09-09 12:29:53,786 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-1710
[INFO|configuration_utils.py:472] 2024-09-09 12:29:53,788 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-1710/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:29:55,303 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-1710/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:29:55,306 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-1710/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:29:55,306 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-1710/special_tokens_map.json
[INFO|trainer.py:2394] 2024-09-09 12:29:57,247 >>
Training completed. Do not forget to share your model on huggingface.co/models =)
[INFO|trainer.py:2632] 2024-09-09 12:29:57,247 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-1368 (score: 0.680984808800419).
100%|ββββββββββ| 1710/1710 [15:01<00:00, 1.94it/s]
100%|ββββββββββ| 1710/1710 [15:01<00:00, 1.90it/s]
[INFO|trainer.py:4283] 2024-09-09 12:29:57,436 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
[INFO|trainer.py:3503] 2024-09-09 12:30:42,660 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
[INFO|configuration_utils.py:472] 2024-09-09 12:30:42,661 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:30:44,034 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:30:44,035 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:30:44,035 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
[INFO|trainer.py:3503] 2024-09-09 12:30:44,082 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
[INFO|configuration_utils.py:472] 2024-09-09 12:30:44,083 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:30:47,113 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:30:47,114 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:30:47,114 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
{'eval_loss': 0.2930145561695099, 'eval_precision': 0.6548403446528129, 'eval_recall': 0.7071702244116037, 'eval_f1': 0.6799999999999999, 'eval_accuracy': 0.9481215310083737, 'eval_runtime': 5.9346, 'eval_samples_per_second': 424.463, 'eval_steps_per_second': 53.079, 'epoch': 10.0}
{'train_runtime': 901.7971, 'train_samples_per_second': 121.269, 'train_steps_per_second': 1.896, 'train_loss': 0.047100042948248794, 'epoch': 10.0}
events.out.tfevents.1725884095.0a1c9bec2a53.15221.0: 0%| | 0.00/10.9k [00:00<?, ?B/s]
events.out.tfevents.1725884095.0a1c9bec2a53.15221.0: 100%|ββββββββββ| 10.9k/10.9k [00:00<00:00, 33.7kB/s]
***** train metrics *****
epoch = 10.0
total_flos = 4927248GF
train_loss = 0.0471
train_runtime = 0:15:01.79
train_samples = 10936
train_samples_per_second = 121.269
train_steps_per_second = 1.896
09/09/2024 12:30:53 - INFO - __main__ - *** Evaluate ***
[INFO|trainer.py:811] 2024-09-09 12:30:53,235 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:30:53,237 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:30:53,238 >> Num examples = 2519
[INFO|trainer.py:3824] 2024-09-09 12:30:53,238 >> Batch size = 8
0%| | 0/315 [00:00<?, ?it/s]
3%|β | 8/315 [00:00<00:03, 77.97it/s]
5%|β | 16/315 [00:00<00:04, 74.16it/s]
8%|β | 24/315 [00:00<00:03, 75.60it/s]
10%|β | 32/315 [00:00<00:03, 70.90it/s]
13%|ββ | 41/315 [00:00<00:03, 74.36it/s]
16%|ββ | 49/315 [00:00<00:03, 73.52it/s]
18%|ββ | 57/315 [00:00<00:03, 73.54it/s]
21%|ββ | 65/315 [00:00<00:03, 71.22it/s]
23%|βββ | 73/315 [00:00<00:03, 72.70it/s]
26%|βββ | 81/315 [00:01<00:03, 68.36it/s]
28%|βββ | 88/315 [00:01<00:03, 66.29it/s]
30%|βββ | 96/315 [00:01<00:03, 69.40it/s]
33%|ββββ | 103/315 [00:01<00:03, 66.83it/s]
35%|ββββ | 111/315 [00:01<00:02, 69.96it/s]
38%|ββββ | 119/315 [00:01<00:02, 70.96it/s]
40%|ββββ | 127/315 [00:01<00:02, 69.01it/s]
43%|βββββ | 134/315 [00:01<00:02, 68.00it/s]
45%|βββββ | 141/315 [00:02<00:02, 68.32it/s]
47%|βββββ | 149/315 [00:02<00:02, 70.31it/s]
50%|βββββ | 157/315 [00:02<00:02, 72.60it/s]
52%|ββββββ | 165/315 [00:02<00:02, 71.29it/s]
55%|ββββββ | 173/315 [00:02<00:02, 70.72it/s]
57%|ββββββ | 181/315 [00:02<00:01, 68.66it/s]
60%|ββββββ | 188/315 [00:02<00:01, 68.89it/s]
62%|βββββββ | 195/315 [00:02<00:01, 66.91it/s]
64%|βββββββ | 202/315 [00:02<00:01, 65.15it/s]
66%|βββββββ | 209/315 [00:03<00:01, 65.07it/s]
69%|βββββββ | 217/315 [00:03<00:01, 67.82it/s]
71%|ββββββββ | 225/315 [00:03<00:01, 70.30it/s]
74%|ββββββββ | 233/315 [00:03<00:01, 72.81it/s]
77%|ββββββββ | 241/315 [00:03<00:01, 70.62it/s]
79%|ββββββββ | 249/315 [00:03<00:00, 69.72it/s]
82%|βββββββββ | 257/315 [00:03<00:00, 67.63it/s]
84%|βββββββββ | 265/315 [00:03<00:00, 69.05it/s]
87%|βββββββββ | 274/315 [00:03<00:00, 72.50it/s]
90%|βββββββββ | 282/315 [00:04<00:00, 74.49it/s]
92%|ββββββββββ| 290/315 [00:04<00:00, 70.74it/s]
95%|ββββββββββ| 298/315 [00:04<00:00, 70.04it/s]
97%|ββββββββββ| 306/315 [00:04<00:00, 71.93it/s]
100%|ββββββββββ| 314/315 [00:04<00:00, 69.90it/s]
100%|ββββββββββ| 315/315 [00:06<00:00, 51.18it/s]
***** eval metrics *****
epoch = 10.0
eval_accuracy = 0.9473
eval_f1 = 0.681
eval_loss = 0.2808
eval_precision = 0.6529
eval_recall = 0.7115
eval_runtime = 0:00:06.16
eval_samples = 2519
eval_samples_per_second = 408.28
eval_steps_per_second = 51.055
09/09/2024 12:30:59 - INFO - __main__ - *** Predict ***
[INFO|trainer.py:811] 2024-09-09 12:30:59,410 >> The following columns in the test set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:30:59,412 >>
***** Running Prediction *****
[INFO|trainer.py:3821] 2024-09-09 12:30:59,412 >> Num examples = 4047
[INFO|trainer.py:3824] 2024-09-09 12:30:59,412 >> Batch size = 8
0%| | 0/506 [00:00<?, ?it/s]
2%|β | 9/506 [00:00<00:05, 89.20it/s]
4%|β | 18/506 [00:00<00:06, 76.66it/s]
5%|β | 26/506 [00:00<00:06, 76.81it/s]
7%|β | 34/506 [00:00<00:06, 75.68it/s]
8%|β | 42/506 [00:00<00:06, 73.46it/s]
10%|β | 50/506 [00:00<00:06, 73.25it/s]
11%|ββ | 58/506 [00:00<00:06, 73.76it/s]
13%|ββ | 66/506 [00:00<00:06, 70.93it/s]
15%|ββ | 74/506 [00:01<00:06, 71.43it/s]
16%|ββ | 82/506 [00:01<00:06, 62.16it/s]
18%|ββ | 89/506 [00:01<00:06, 62.05it/s]
19%|ββ | 97/506 [00:01<00:06, 65.70it/s]
21%|ββ | 105/506 [00:01<00:05, 68.07it/s]
22%|βββ | 113/506 [00:01<00:05, 70.17it/s]
24%|βββ | 121/506 [00:01<00:05, 69.38it/s]
25%|βββ | 129/506 [00:01<00:06, 59.19it/s]
27%|βββ | 136/506 [00:02<00:06, 57.59it/s]
28%|βββ | 144/506 [00:02<00:05, 61.37it/s]
30%|βββ | 152/506 [00:02<00:05, 64.13it/s]
31%|ββββ | 159/506 [00:02<00:05, 59.74it/s]
33%|ββββ | 166/506 [00:02<00:05, 60.44it/s]
34%|ββββ | 173/506 [00:02<00:05, 62.40it/s]
36%|ββββ | 180/506 [00:02<00:05, 64.04it/s]
37%|ββββ | 188/506 [00:02<00:04, 66.16it/s]
39%|ββββ | 195/506 [00:02<00:04, 66.21it/s]
40%|ββββ | 203/506 [00:03<00:04, 68.48it/s]
42%|βββββ | 210/506 [00:03<00:04, 65.95it/s]
43%|βββββ | 217/506 [00:03<00:04, 66.63it/s]
44%|βββββ | 224/506 [00:03<00:04, 61.58it/s]
46%|βββββ | 231/506 [00:03<00:04, 63.12it/s]
47%|βββββ | 238/506 [00:03<00:04, 61.97it/s]
49%|βββββ | 246/506 [00:03<00:03, 65.36it/s]
50%|βββββ | 253/506 [00:03<00:03, 65.50it/s]
52%|ββββββ | 261/506 [00:03<00:03, 68.54it/s]
53%|ββββββ | 269/506 [00:04<00:03, 71.13it/s]
55%|ββββββ | 277/506 [00:04<00:03, 72.79it/s]
56%|ββββββ | 285/506 [00:04<00:03, 70.62it/s]
58%|ββββββ | 293/506 [00:04<00:02, 71.05it/s]
59%|ββββββ | 301/506 [00:04<00:02, 72.05it/s]
61%|ββββββ | 309/506 [00:04<00:02, 72.62it/s]
63%|βββββββ | 317/506 [00:04<00:02, 72.83it/s]
64%|βββββββ | 326/506 [00:04<00:02, 75.83it/s]
66%|βββββββ | 335/506 [00:04<00:02, 77.77it/s]
68%|βββββββ | 343/506 [00:05<00:02, 76.74it/s]
69%|βββββββ | 351/506 [00:05<00:02, 76.99it/s]
71%|βββββββ | 359/506 [00:05<00:01, 76.22it/s]
73%|ββββββββ | 367/506 [00:05<00:01, 73.61it/s]
74%|ββββββββ | 375/506 [00:05<00:01, 68.17it/s]
75%|ββββββββ | 382/506 [00:05<00:01, 67.51it/s]
77%|ββββββββ | 389/506 [00:05<00:01, 62.73it/s]
78%|ββββββββ | 396/506 [00:05<00:01, 60.98it/s]
80%|ββββββββ | 403/506 [00:05<00:01, 57.28it/s]
81%|ββββββββ | 410/506 [00:06<00:01, 59.54it/s]
82%|βββββββββ | 417/506 [00:06<00:01, 61.06it/s]
84%|βββββββββ | 424/506 [00:06<00:01, 61.58it/s]
85%|βββββββββ | 432/506 [00:06<00:01, 66.19it/s]
87%|βββββββββ | 439/506 [00:06<00:01, 66.57it/s]
88%|βββββββββ | 446/506 [00:06<00:00, 65.56it/s]
90%|βββββββββ | 454/506 [00:06<00:00, 67.26it/s]
91%|ββββββββββ| 462/506 [00:06<00:00, 70.64it/s]
93%|ββββββββββ| 470/506 [00:06<00:00, 71.31it/s]
94%|ββββββββββ| 478/506 [00:07<00:00, 72.28it/s]
96%|ββββββββββ| 486/506 [00:07<00:00, 70.00it/s]
98%|ββββββββββ| 494/506 [00:07<00:00, 69.30it/s]
99%|ββββββββββ| 502/506 [00:07<00:00, 71.07it/s]
100%|ββββββββββ| 506/506 [00:09<00:00, 51.46it/s]
[INFO|trainer.py:3503] 2024-09-09 12:31:09,424 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
[INFO|configuration_utils.py:472] 2024-09-09 12:31:09,425 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:31:10,791 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:31:10,792 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:31:10,793 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
***** predict metrics *****
predict_accuracy = 0.9476
predict_f1 = 0.691
predict_loss = 0.3017
predict_precision = 0.6776
predict_recall = 0.7049
predict_runtime = 0:00:09.84
predict_samples_per_second = 410.896
predict_steps_per_second = 51.375
events.out.tfevents.1725885059.0a1c9bec2a53.15221.1: 0%| | 0.00/560 [00:00<?, ?B/s]
events.out.tfevents.1725885059.0a1c9bec2a53.15221.1: 100%|ββββββββββ| 560/560 [00:00<00:00, 1.97kB/s]
|