Rodrigo1771's picture
End of training
ae36b45 verified
---
license: apache-2.0
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
tags:
- token-classification
- generated_from_trainer
datasets:
- Rodrigo1771/symptemist-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: output
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Rodrigo1771/symptemist-ner
type: Rodrigo1771/symptemist-ner
config: SympTEMIST NER
split: validation
args: SympTEMIST NER
metrics:
- name: Precision
type: precision
value: 0.6675139806812405
- name: Recall
type: recall
value: 0.7186644772851669
- name: F1
type: f1
value: 0.6921454928835002
- name: Accuracy
type: accuracy
value: 0.9483461131252205
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/symptemist-ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2747
- Precision: 0.6675
- Recall: 0.7187
- F1: 0.6921
- Accuracy: 0.9483
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 150 | 0.1504 | 0.5091 | 0.6409 | 0.5675 | 0.9456 |
| No log | 2.0 | 300 | 0.1547 | 0.5881 | 0.6995 | 0.639 | 0.9462 |
| No log | 3.0 | 450 | 0.1618 | 0.6237 | 0.6984 | 0.6589 | 0.9476 |
| 0.126 | 4.0 | 600 | 0.1920 | 0.6154 | 0.7181 | 0.6628 | 0.9451 |
| 0.126 | 5.0 | 750 | 0.2102 | 0.6561 | 0.7028 | 0.6786 | 0.9488 |
| 0.126 | 6.0 | 900 | 0.2414 | 0.6443 | 0.7088 | 0.6750 | 0.9467 |
| 0.0251 | 7.0 | 1050 | 0.2500 | 0.6588 | 0.7061 | 0.6816 | 0.9492 |
| 0.0251 | 8.0 | 1200 | 0.2642 | 0.6440 | 0.7307 | 0.6846 | 0.9474 |
| 0.0251 | 9.0 | 1350 | 0.2747 | 0.6675 | 0.7187 | 0.6921 | 0.9483 |
| 0.0091 | 10.0 | 1500 | 0.2767 | 0.6595 | 0.7187 | 0.6878 | 0.9488 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1