Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM2-1.7B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e2ca8fa901ae9dd7_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e2ca8fa901ae9dd7_train_data.json
  type:
    field_instruction: prompt
    field_output: target
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 30
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/2254aed2-2103-46f0-beda-20abbe00dbdb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/e2ca8fa901ae9dd7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e2815d2a-97ba-4bff-aa3c-18e11ee955e6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e2815d2a-97ba-4bff-aa3c-18e11ee955e6
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

2254aed2-2103-46f0-beda-20abbe00dbdb

This model is a fine-tuned version of unsloth/SmolLM2-1.7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0003 1 nan
0.0 0.0136 50 nan
0.0 0.0272 100 nan
0.0 0.0408 150 nan
0.0 0.0544 200 nan
0.0 0.0680 250 nan
0.0 0.0816 300 nan
0.0 0.0952 350 nan
0.0 0.1088 400 nan
0.0 0.1224 450 nan
0.0 0.1359 500 nan
0.0 0.1495 550 nan
0.0 0.1631 600 nan
0.0 0.1767 650 nan
0.0 0.1903 700 nan
0.0 0.2039 750 nan
0.0 0.2175 800 nan
0.0 0.2311 850 nan
0.0 0.2447 900 nan
0.0 0.2583 950 nan
0.0 0.2719 1000 nan
0.0 0.2855 1050 nan
0.0 0.2991 1100 nan
0.0 0.3127 1150 nan
0.0 0.3263 1200 nan
0.0 0.3399 1250 nan
0.0 0.3535 1300 nan
0.0 0.3671 1350 nan
0.0 0.3807 1400 nan
0.0 0.3942 1450 nan
0.0 0.4078 1500 nan
0.0 0.4214 1550 nan
0.0 0.4350 1600 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Romain-XV/2254aed2-2103-46f0-beda-20abbe00dbdb

Adapter
(276)
this model