SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2
This is a sentence-transformers model finetuned from sentence-transformers/distiluse-base-multilingual-cased-v2 on the wmt_da, mlqe_en_de, mlqe_en_zh, mlqe_et_en, mlqe_ne_en, mlqe_ro_en and mlqe_si_en datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/distiluse-base-multilingual-cased-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- Languages: bn, cs, de, en, et, fi, fr, gu, ha, hi, is, ja, kk, km, lt, lv, pl, ps, ru, ta, tr, uk, xh, zh, zu, ne, ro, si
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): MultiHeadGeneralizedPooling(
(P): ModuleList(
(0-7): 8 x Linear(in_features=768, out_features=96, bias=True)
)
(W1): ModuleList(
(0-7): 8 x Linear(in_features=96, out_features=384, bias=True)
)
(W2): ModuleList(
(0-7): 8 x Linear(in_features=384, out_features=96, bias=True)
)
)
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/pre_training_additive_generalized_model-sts")
# Run inference
sentences = [
'Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani cetatea intră din nou sub stăpânirea europenilor.',
'Ottoman garnisoana is withdrawing into the south of the Danube and, after 164 years, it is once again under the control of Europeans.',
'This is because, once again, we have taken into account the fact that we have adopted a large number of legislative proposals.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-eval
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-eval | sts-test |
---|---|---|
pearson_cosine | 0.4244 | 0.3046 |
spearman_cosine | 0.4175 | 0.2676 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.0365 |
spearman_cosine | 0.0938 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.1914 |
spearman_cosine | 0.2047 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3733 |
spearman_cosine | 0.3778 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.4092 |
spearman_cosine | 0.4025 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.4864 |
spearman_cosine | 0.4657 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.2988 |
spearman_cosine | 0.2768 |
Training Details
Training Datasets
wmt_da
- Dataset: wmt_da at 301de38
- Size: 1,285,190 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 36.96 tokens
- max: 128 tokens
- min: 5 tokens
- mean: 37.03 tokens
- max: 128 tokens
- min: 0.0
- mean: 0.7
- max: 1.0
- Samples:
sentence1 sentence2 score Lifeguard Capt. Larry Giles said at a media briefing that a shark had been spotted in the area a few weeks earlier, but it was determined not to be a dangerous species of shark.
Lifeguard કેપ્ટન. લેરી Giles ખાતે જણાવ્યું હતું કે, એક મીડિયા પરિષદ કે એક શાર્ક કરવામાં આવી હતી દેખાયો વિસ્તારમાં થોડા અઠવાડિયા અગાઉ, પરંતુ તે નક્કી કરવામાં આવ્યું નથી કરી એક ખતરનાક પ્રજાતિઓ શાર્ક છે.
0.175
Structural biologists can now take this information and reclassify the structure of the viruses, which will help unveil molecular and evolutionary relationships between different viruses.
Strukturbiologen können nun diese Informationen aufnehmen und die Struktur der Viren neu klassifizieren, was dazu beitragen wird, molekulare und evolutionäre Beziehungen zwischen verschiedenen Viren aufzudecken.
1.0
Ich bitte Sie“.
Žádám vás. "
0.92
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_en_de
- Dataset: mlqe_en_de at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 11 tokens
- mean: 23.78 tokens
- max: 44 tokens
- min: 11 tokens
- mean: 26.51 tokens
- max: 54 tokens
- min: 0.06
- mean: 0.86
- max: 1.0
- Samples:
sentence1 sentence2 score Early Muslim traders and merchants visited Bengal while traversing the Silk Road in the first millennium.
Frühe muslimische Händler und Kaufleute besuchten Bengalen, während sie im ersten Jahrtausend die Seidenstraße durchquerten.
0.9233333468437195
While Fran dissipated shortly after that, the tropical wave progressed into the northeastern Pacific Ocean.
Während Fran kurz danach zerstreute, entwickelte sich die tropische Welle in den nordöstlichen Pazifischen Ozean.
0.8899999856948853
Distressed securities include such events as restructurings, recapitalizations, and bankruptcies.
Zu den belasteten Wertpapieren gehören Restrukturierungen, Rekapitalisierungen und Insolvenzen.
0.9300000071525574
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_en_zh
- Dataset: mlqe_en_zh at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 9 tokens
- mean: 24.09 tokens
- max: 47 tokens
- min: 12 tokens
- mean: 29.93 tokens
- max: 74 tokens
- min: 0.01
- mean: 0.68
- max: 0.98
- Samples:
sentence1 sentence2 score In the late 1980s, the hotel's reputation declined, and it functioned partly as a "backpackers hangout."
在 20 世纪 80 年代末 , 这家旅馆的声誉下降了 , 部分地起到了 "背包吊销" 的作用。
0.40666666626930237
From 1870 to 1915, 36 million Europeans migrated away from Europe.
从 1870 年到 1915 年 , 3, 600 万欧洲人从欧洲移民。
0.8333333730697632
In some photos, the footpads did press into the regolith, especially when they moved sideways at touchdown.
在一些照片中 , 脚垫确实挤进了后台 , 尤其是当他们在触地时侧面移动时。
0.33000001311302185
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_et_en
- Dataset: mlqe_et_en at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 14 tokens
- mean: 31.88 tokens
- max: 63 tokens
- min: 11 tokens
- mean: 24.57 tokens
- max: 56 tokens
- min: 0.03
- mean: 0.67
- max: 1.0
- Samples:
sentence1 sentence2 score Gruusias vahistati president Mihhail Saakašvili pressibüroo nõunik Simon Kiladze, keda süüdistati spioneerimises.
In Georgia, an adviser to the press office of President Mikhail Saakashvili, Simon Kiladze, was arrested and accused of spying.
0.9466666579246521
Nii teadmissotsioloogia pooldajad tavaliselt Kuhni tõlgendavadki, arendades tema vaated sõnaselgeks relativismiks.
This is how supporters of knowledge sociology usually interpret Kuhn by developing his views into an explicit relativism.
0.9366666674613953
18. jaanuaril 2003 haarasid mitmeid Canberra eeslinnu võsapõlengud, milles hukkus neli ja sai vigastada 435 inimest.
On 18 January 2003, several of the suburbs of Canberra were seized by debt fires which killed four people and injured 435 people.
0.8666666150093079
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_ne_en
- Dataset: mlqe_ne_en at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 17 tokens
- mean: 40.67 tokens
- max: 77 tokens
- min: 9 tokens
- mean: 24.66 tokens
- max: 128 tokens
- min: 0.01
- mean: 0.39
- max: 1.0
- Samples:
sentence1 sentence2 score सामान्य बजट प्रायः फेब्रुअरीका अंतिम कार्य दिवसमा लाईन्छ।
A normal budget is usually awarded to the digital working day of February.
0.5600000023841858
कविताका यस्ता स्वरूपमा दुई, तिन वा चार पाउसम्मका मुक्तक, हाइकु, सायरी र लोकसूक्तिहरू पर्दछन् ।
The book consists of two, free of her or four paulets, haiku, Sairi, and locus in such forms.
0.23666666448116302
ब्रिट्नीले यस बारेमा प्रतिक्रिया ब्यक्ता गरदै भनिन,"कुन ठूलो कुरा हो र?
Britney did not respond to this, saying "which is a big thing and a big thing?
0.21666665375232697
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_ro_en
- Dataset: mlqe_ro_en at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 12 tokens
- mean: 29.44 tokens
- max: 60 tokens
- min: 10 tokens
- mean: 22.38 tokens
- max: 65 tokens
- min: 0.01
- mean: 0.68
- max: 1.0
- Samples:
sentence1 sentence2 score Orașul va fi împărțit în patru districte, iar suburbiile în 10 mahalale.
The city will be divided into four districts and suburbs into 10 mahalals.
0.4699999988079071
La scurt timp după aceasta, au devenit cunoscute debarcările germane de la Trondheim, Bergen și Stavanger, precum și luptele din Oslofjord.
In the light of the above, the Authority concludes that the aid granted to ADIF is compatible with the internal market pursuant to Article 61 (3) (c) of the EEA Agreement.
0.02666666731238365
Până în vara 1791, în Clubul iacobinilor au dominat reprezentanții monarhismului liberal constituțional.
Until the summer of 1791, representatives of liberal constitutional monarchism dominated in the Jacobins Club.
0.8733333349227905
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_si_en
- Dataset: mlqe_si_en at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 18.19 tokens
- max: 38 tokens
- min: 9 tokens
- mean: 22.31 tokens
- max: 128 tokens
- min: 0.01
- mean: 0.51
- max: 1.0
- Samples:
sentence1 sentence2 score ඇපලෝ 4 සැටර්න් V බූස්ටරයේ ප්රථම පර්යේෂණ පියාසැරිය විය.
The first research flight of the Apollo 4 Saturn V Booster.
0.7966666221618652
මෙහි අවපාතය සැලකීමේ දී, මෙහි 48%ක අවරෝහණය $ මිලියන 125කට අධික චිත්රපටයක් ලද තෙවන කුඩාම අවපාතය වේ.
In conjunction with the depression here, 48 % of obesity here is the third smallest depression in over $ 125 million film.
0.17666666209697723
එසේම "බකමූණන් මගින් මෙම රාක්ෂසියගේ රාත්රී හැසිරීම සංකේතවත් වන බව" පවසයි.
Also "the owl says that this monster's night behavior is symbolic".
0.8799999952316284
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Datasets
wmt_da
- Dataset: wmt_da at 301de38
- Size: 1,285,190 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 35.67 tokens
- max: 128 tokens
- min: 3 tokens
- mean: 36.53 tokens
- max: 128 tokens
- min: 0.0
- mean: 0.7
- max: 1.0
- Samples:
sentence1 sentence2 score ARKASINDA TABİİ Kİ FETÖ VAR
Behind the TABILITY OF FEAR
0.02
អត្ថប្រយោជន៍ដ៏ធំ មួយ នៅក្នុង ការវាយបក គឺជា កំណើនកម្លាំងចលករ ទៅមុខ នៃ អ្នកវាយប្រហារ ដែល រុញផ្ទប់ ពួកគេ ខ្លាំង បន្ថែមទៀត ចូលក្នុង ការវាយបក ឬ សង របស់អ្នក។
A big advantage in chaos is the growing strength of the attackers, which pushes them further into your grasp or reputation.
0.22
વર્ષ 2012માં તેમને આંગણવાડી સેવિકા તરીકે બઢતી આપવામાં આવી હતી.
In 2010, she was promoted to kindergarten Swinka.
0.19
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_en_de
- Dataset: mlqe_en_de at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 11 tokens
- mean: 24.11 tokens
- max: 49 tokens
- min: 11 tokens
- mean: 26.66 tokens
- max: 55 tokens
- min: 0.03
- mean: 0.81
- max: 1.0
- Samples:
sentence1 sentence2 score Resuming her patrols, Constitution managed to recapture the American sloop Neutrality on 27 March and, a few days later, the French ship Carteret.
Mit der Wiederaufnahme ihrer Patrouillen gelang es der Verfassung, am 27. März die amerikanische Schleuderneutralität und wenige Tage später das französische Schiff Carteret zurückzuerobern.
0.9033333659172058
Blaine's nomination alienated many Republicans who viewed Blaine as ambitious and immoral.
Blaines Nominierung entfremdete viele Republikaner, die Blaine als ehrgeizig und unmoralisch betrachteten.
0.9216666221618652
This initiated a brief correspondence between the two which quickly descended into political rancor.
Dies leitete eine kurze Korrespondenz zwischen den beiden ein, die schnell zu politischem Groll abstieg.
0.878333330154419
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_en_zh
- Dataset: mlqe_en_zh at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 9 tokens
- mean: 23.75 tokens
- max: 49 tokens
- min: 11 tokens
- mean: 29.56 tokens
- max: 67 tokens
- min: 0.26
- mean: 0.65
- max: 0.9
- Samples:
sentence1 sentence2 score Freeman briefly stayed with the king before returning to Accra via Whydah, Ahgwey and Little Popo.
弗里曼在经过惠达、阿格威和小波波回到阿克拉之前与国王一起住了一会儿。
0.6683333516120911
Fantastic Fiction "Scratches in the Sky, Ben Peek, Agog!
奇特的虚构 "天空中的碎片 , 本佩克 , 阿戈 !
0.71833336353302
For Hermann Keller, the running quavers and semiquavers "suffuse the setting with health and strength."
对赫尔曼 · 凯勒来说 , 跑步的跳跃者和半跳跃者 "让环境充满健康和力量" 。
0.7066666483879089
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_et_en
- Dataset: mlqe_et_en at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 12 tokens
- mean: 32.4 tokens
- max: 58 tokens
- min: 10 tokens
- mean: 24.87 tokens
- max: 47 tokens
- min: 0.03
- mean: 0.6
- max: 0.99
- Samples:
sentence1 sentence2 score Jackson pidas seal kõne, öeldes, et James Brown on tema suurim inspiratsioon.
Jackson gave a speech there saying that James Brown is his greatest inspiration.
0.9833333492279053
Kaanelugu rääkis loo kolme ungarlase üleelamistest Ungari revolutsiooni päevil.
The life of the Man spoke of a story of three Hungarians living in the days of the Hungarian Revolution.
0.28999999165534973
Teise maailmasõja ajal oli ta mitme Saksa juhatusele alluvate eesti väeosa ülem.
During World War II, he was the commander of several of the German leadership.
0.4516666829586029
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_ne_en
- Dataset: mlqe_ne_en at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 17 tokens
- mean: 41.03 tokens
- max: 85 tokens
- min: 10 tokens
- mean: 24.77 tokens
- max: 128 tokens
- min: 0.05
- mean: 0.36
- max: 0.92
- Samples:
sentence1 sentence2 score १८९२ तिर भवानीदत्त पाण्डेले 'मुद्रा राक्षस'को अनुवाद गरे।
Around 1892, Bhavani Pandit translated the 'money monster'.
0.8416666388511658
यस बच्चाको मुखले आमाको स्तन यस बच्चाको मुखले आमाको स्तन राम्ररी च्यापेको छ ।
The breasts of this child's mouth are taped well with the mother's mouth.
0.2150000035762787
बुवाको बन्दुक चोरेर हिँडेका बराललाई केआई सिंहले अब गोली ल्याउन लगाए ।...
Kei Singh, who stole the boy's closet, took the bullet to bring it now..
0.27000001072883606
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_ro_en
- Dataset: mlqe_ro_en at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 14 tokens
- mean: 30.25 tokens
- max: 59 tokens
- min: 6 tokens
- mean: 22.7 tokens
- max: 55 tokens
- min: 0.01
- mean: 0.68
- max: 1.0
- Samples:
sentence1 sentence2 score Cornwallis se afla înconjurat pe uscat de forțe armate net superioare și retragerea pe mare era îndoielnică din cauza flotei franceze.
Cornwallis was surrounded by shore by higher armed forces and the sea withdrawal was doubtful due to the French fleet.
0.8199999928474426
thumbrightuprightDansatori [[cretani de muzică tradițională.
Number of employees employed in the production of the like product in the Union.
0.009999999776482582
Potrivit documentelor vremii și tradiției orale, aceasta a fost cea mai grea perioadă din istoria orașului.
According to the documents of the oral weather and tradition, this was the hardest period in the city's history.
0.5383332967758179
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_si_en
- Dataset: mlqe_si_en at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 18.12 tokens
- max: 36 tokens
- min: 7 tokens
- mean: 22.18 tokens
- max: 128 tokens
- min: 0.03
- mean: 0.51
- max: 0.99
- Samples:
sentence1 sentence2 score එයට ශි්ර ලංකාවේ සාමය ඇති කිරිමටත් නැති කිරිමටත් පුළුවන්.
It can also cause peace in Sri Lanka.
0.3199999928474426
ඔහු මනෝ විද්යාව, සමාජ විද්යාව, ඉතිහාසය හා සන්නිවේදනය යන විෂය ක්ෂේත්රයන් පිලිබදවද අධ්යයනයන් සිදු කිරීමට උත්සාහ කරන ලදි.
He attempted to do subjects in psychology, sociology, history and communication.
0.5366666913032532
එහෙත් කිසිදු මිනිසෙක් හෝ ගැහැනියෙක් එලිමහනක නොවූහ.
But no man or woman was eliminated.
0.2783333361148834
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 2warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | wmt da loss | mlqe en de loss | mlqe en zh loss | mlqe et en loss | mlqe ne en loss | mlqe ro en loss | mlqe si en loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4 | 6690 | 7.7924 | 7.5526 | 7.5730 | 7.5671 | 7.5310 | 7.5275 | 7.5066 | 7.5532 | 0.2149 | - |
0.8 | 13380 | 7.5514 | 7.5407 | 7.5866 | 7.5611 | 7.5121 | 7.5192 | 7.4806 | 7.5379 | 0.2855 | - |
1.2 | 20070 | 7.5208 | 7.5386 | 7.6114 | 7.5660 | 7.5198 | 7.5141 | 7.4859 | 7.5461 | 0.2722 | - |
1.6 | 26760 | 7.5011 | 7.5307 | 7.6242 | 7.5659 | 7.5220 | 7.5073 | 7.4819 | 7.5440 | 0.2830 | - |
2.0 | 33450 | 7.4927 | 7.5275 | 7.6315 | 7.5681 | 7.5200 | 7.5144 | 7.4908 | 7.5481 | 0.2768 | 0.2676 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.3.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for RomainDarous/pre_training_additive_generalized_model
Datasets used to train RomainDarous/pre_training_additive_generalized_model
Evaluation results
- Pearson Cosine on sts evalself-reported0.424
- Spearman Cosine on sts evalself-reported0.417
- Pearson Cosine on sts evalself-reported0.036
- Spearman Cosine on sts evalself-reported0.094
- Pearson Cosine on sts evalself-reported0.191
- Spearman Cosine on sts evalself-reported0.205
- Pearson Cosine on sts evalself-reported0.373
- Spearman Cosine on sts evalself-reported0.378
- Pearson Cosine on sts evalself-reported0.409
- Spearman Cosine on sts evalself-reported0.403