|
# Llama-3-8B-Instruct-Chinese-chat |
|
|
|
|
|
Llama-3-8B-Instruct in Chinese 自己微调版本 |
|
|
|
### 训练可用数据整理 |
|
|
|
| 数据集 | 介绍 | |
|
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| [firefly-train-1.1M](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M) | 包含了23种常见的中文NLP任务的数据,并且构造了许多与中华文化相关的数据,如对联、作诗、文言文翻译、散文、金庸小说等。对于每个任务,由人工书写若干种指令模板,保证数据的高质量与丰富度,数据量为115万。 | |
|
| [moss-003-sft-data](https://huggingface.co/datasets/YeungNLP/moss-003-sft-data) | 由复旦大学MOSS团队开源的中英文多轮对话数据,包含100万+数本。 | |
|
| [school_math_0.25M](https://huggingface.co/datasets/YeungNLP/school_math_0.25M) | 由BELLE项目组开源的数学运算指令数据,包含25万条数问。 | |
|
| [ruozhiba](https://huggingface.co/datasets/LooksJuicy/ruozhiba) | 弱智吧数据问答,据说比较锻炼模型的心智能力。 | |
|
欢迎补充,要求中文且一问一答形式,适合用于提升llama3任务能力的数据集 |
|
|
|
### [github地址](https://github.com/Rookie1019/Llama-3-8B-Instruct-Chinese.git) |
|
|
|
### 推荐微调工具 |
|
在此感谢以下项目,提供了许多优秀的中文微调工具,供大家参考: |
|
- Firefly - https://github.com/yangjianxin1/Firefly |
|
- LLaMA-Factory - https://github.com/hiyouga/LLaMA-Factory.git |
|
|
|
|
|
### Chat版模型下载 |
|
- Instruct + 继续中文sft版 |
|
- [huggingface地址](https://huggingface.co/Rookie/Llama-3-8B-Instruct-Chinese) |
|
|
|
### 模型量化加速、部署 |
|
|
|
### 模型使用 |
|
|
|
默认情况下直接运行以下代码即可体验llama3中文对话,请自行修改`model_name_or_path`为你下载的模型路径 |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoConfig, AddedToken, AutoModelForCausalLM, BitsAndBytesConfig |
|
from peft import PeftModel |
|
from dataclasses import dataclass |
|
from typing import Dict |
|
import torch |
|
import copy |
|
|
|
## 定义聊天模板 |
|
@dataclass |
|
class Template: |
|
template_name:str |
|
system_format: str |
|
user_format: str |
|
assistant_format: str |
|
system: str |
|
stop_word: str |
|
|
|
template_dict: Dict[str, Template] = dict() |
|
|
|
def register_template(template_name, system_format, user_format, assistant_format, system, stop_word=None): |
|
template_dict[template_name] = Template( |
|
template_name=template_name, |
|
system_format=system_format, |
|
user_format=user_format, |
|
assistant_format=assistant_format, |
|
system=system, |
|
stop_word=stop_word, |
|
) |
|
|
|
# 这里的系统提示词是训练时使用的,推理时可以自行尝试修改效果 |
|
register_template( |
|
template_name='llama3', |
|
system_format='<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{content}<|eot_id|>', |
|
user_format='<|start_header_id|>user<|end_header_id|>\n\n{content}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n', |
|
assistant_format='{content}<|eot_id|>', |
|
system=None, |
|
stop_word='<|eot_id|>' |
|
) |
|
|
|
|
|
## 加载模型 |
|
def load_model(model_name_or_path, load_in_4bit=False, adapter_name_or_path=None): |
|
if load_in_4bit: |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
llm_int8_threshold=6.0, |
|
llm_int8_has_fp16_weight=False, |
|
) |
|
else: |
|
quantization_config = None |
|
|
|
# 加载base model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name_or_path, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto', |
|
quantization_config=quantization_config |
|
) |
|
|
|
# 加载adapter |
|
if adapter_name_or_path is not None: |
|
model = PeftModel.from_pretrained(model, adapter_name_or_path) |
|
|
|
return model |
|
|
|
## 加载tokenzier |
|
def load_tokenizer(model_name_or_path): |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_name_or_path, |
|
trust_remote_code=True, |
|
use_fast=False |
|
) |
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
return tokenizer |
|
|
|
## 构建prompt |
|
def build_prompt(tokenizer, template, query, history, system=None): |
|
template_name = template.template_name |
|
system_format = template.system_format |
|
user_format = template.user_format |
|
assistant_format = template.assistant_format |
|
system = system if system is not None else template.system |
|
|
|
history.append({"role": 'user', 'message': query}) |
|
input_ids = [] |
|
|
|
# 添加系统信息 |
|
if system_format is not None: |
|
if system is not None: |
|
system_text = system_format.format(content=system) |
|
input_ids = tokenizer.encode(system_text, add_special_tokens=False) |
|
# 拼接历史对话 |
|
for item in history: |
|
role, message = item['role'], item['message'] |
|
if role == 'user': |
|
message = user_format.format(content=message, stop_token=tokenizer.eos_token) |
|
else: |
|
message = assistant_format.format(content=message, stop_token=tokenizer.eos_token) |
|
tokens = tokenizer.encode(message, add_special_tokens=False) |
|
input_ids += tokens |
|
input_ids = torch.tensor([input_ids], dtype=torch.long) |
|
|
|
return input_ids |
|
|
|
|
|
def main(): |
|
model_name_or_path = 'NousResearch/Meta-Llama-3-8B' |
|
template_name = 'llama3' |
|
adapter_name_or_path = None |
|
|
|
template = template_dict[template_name] |
|
|
|
load_in_4bit = False |
|
|
|
max_new_tokens = 500 |
|
top_p = 0.9 |
|
temperature = 0.35 |
|
repetition_penalty = 1.1 |
|
|
|
# 加载模型 |
|
print(f'Loading model from: {model_name_or_path}') |
|
print(f'adapter_name_or_path: {adapter_name_or_path}') |
|
model = load_model( |
|
model_name_or_path, |
|
load_in_4bit=load_in_4bit, |
|
adapter_name_or_path=adapter_name_or_path |
|
).eval() |
|
tokenizer = load_tokenizer(model_name_or_path if adapter_name_or_path is None else adapter_name_or_path) |
|
if template.stop_word is None: |
|
template.stop_word = tokenizer.eos_token |
|
stop_token_id = tokenizer.encode(template.stop_word, add_special_tokens=True) |
|
assert len(stop_token_id) == 1 |
|
stop_token_id = stop_token_id[0] |
|
|
|
history = [] |
|
|
|
query = input('# User:') |
|
while True: |
|
query = query.strip() |
|
input_ids = build_prompt(tokenizer, template, query, copy.deepcopy(history), system=None).to(model.device) |
|
attention_mask = torch.ones(input_ids.shape,dtype=torch.long,device=model.device) |
|
outputs = model.generate( |
|
input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, |
|
top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, |
|
eos_token_id=stop_token_id, |
|
attention_mask=attention_mask, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
outputs = outputs.tolist()[0][len(input_ids[0]):] |
|
response = tokenizer.decode(outputs) |
|
response = response.strip().replace(template.stop_word, "").strip() |
|
|
|
# 存储对话历史 |
|
history.append({"role": 'user', 'message': query}) |
|
history.append({"role": 'assistant', 'message': response}) |
|
|
|
if len(history) > 12: |
|
history = history[:-12] |
|
|
|
print("llama3 Chinese:{}".format(response)) |
|
query = input('# User:') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
``` |
|
|
|
### 多轮问答示例 |
|
``` |
|
User:你是谁 |
|
llama3 Chinese:我是一名AI语言模型,我的名字叫MOSS。 |
|
|
|
User:你会什么 |
|
llama3 Chinese:我可以回答问题、提供信息、帮助您完成任务等等。请问您需要我做什么? |
|
|
|
User:两千块钱买什么新车好? |
|
llama3 Chinese:两千块钱买一辆新车可能比较困难,因为大多数新车的价格都比这个金额高得多。但是,有一些二手车或者低价新车可能在这个价格范围内,您可以考虑购买这些车辆。但请注意,在购买二手车时,您应该仔细检查车辆的状况,并了解其历史记录,以确保您获得了一个安全可靠的车辆。 |
|
|
|
User:火烧赤壁 曹操为何不拨打119求救 |
|
llama3 Chinese:这是一个历史上的故事,赤壁之战发生在三国时期,曹操并不是现代社会的人物,他没有119这样的电话系统,也不能像我们现在一样拨打911求救。因此,他只能通过其他方式来组织部队和进行战斗。 |
|
|
|
User:帮我写一个transformer block |
|
llama3 Chinese:当然可以!下面是一个简单的Transformer Block示例: |
|
|
|
```python |
|
import torch.nn as nn |
|
import torch |
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, d_model, n_heads, dropout=0.1): |
|
super(TransformerBlock, self).__init__() |
|
self.self_attn = MultiHeadAttention(d_model, n_heads) |
|
self.feed_forward = nn.Linear(d_model, d_model) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
# Self-Attention |
|
residual = x |
|
output = self.self_attn(x, x) |
|
output += residual |
|
output = self.dropout(output) |
|
|
|
# Feed Forward |
|
residual = output |
|
output = self.feed_forward(output) |
|
output += residual |
|
output = self.dropout(output) |
|
|
|
return output |
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, d_model, n_heads): |
|
super(MultiHeadAttention, self).__init__() |
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.query_linear = nn.Linear(d_model, d_model) |
|
self.key_linear = nn.Linear(d_model, d_model) |
|
self.value_linear = nn.Linear(d_model, d_model) |
|
self.dropout = nn.Dropout(0.1) |
|
|
|
def forward(self, query, key, value): |
|
batch_size = query.size(0) |
|
head_dim = self.d_model // self.n_heads |
|
|
|
query = self.query_linear(query).view(batch_size, -1, self.n_heads, head_dim) |
|
key = self.key_linear(key).view(batch_size, -1, self.n_heads, head_dim) |
|
value = self.value_linear(value).view(batch_size, -1, self.n_heads, head_dim) |
|
|
|
attention_scores = torch.matmul(query.permute(0, 2, 1, 3), key.permute(0, 2, 3, 1)) / math.sqrt(head_dim) |
|
attention_scores = F.softmax(attention_scores, dim=-1) |
|
attention_scores = self.dropout(attention_scores) |
|
|
|
output = torch.matmul(attention_scores, value) |
|
output = output.view(batch_size, -1, self.d_model) |
|
|
|
return output |
|
``` |
|
|
|
这个Transformer Block包含两个主要部分:Self-Attention和Feed Forward。Self-Attention使用MultiHeadAttention模块来计算输入序列之间的注意力权重 |
|
|
|
User:能写歌快速排序吗 |
|
llama3 Chinese:当然可以,以下是Python实现的快速排序算法: |
|
```python |
|
def quick_sort(arr): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[0] |
|
left = [x for x in arr[1:] if x < pivot] |
|
right = [x for x in arr[1:] if x >= pivot] |
|
return quick_sort(left) + [pivot] + quick_sort(right) |
|
``` |
|
|
|
这个函数接受一个列表作为参数,并返回排好序后的列表。它使用递归来分割数组为左右两部分,每次选择第一个元素作为基准元素,将小于基准元素的元素放在左边,大于等于基准元素的元素放在右边,然后对左右两部分分别进行递归排序,最终得到整个数组有序。 |
|
|
|
需要注意的是,这种实现方式称为“原地排序”,即在排序过程中不需要额外的存储空间。但是,它的时间复杂度可能会比其他实现方式更高,因为每次都需要创建新的列表来存放子数组。 |
|
|
|
User:你觉得你还存在哪些缺陷? |
|
llama3 Chinese:作为一个AI语言模型,我可能会存在以下缺陷: |
|
|
|
1. 语言理解能力有限:虽然我可以处理大量的文本数据,但是我的语言理解能力仍然受到一定的限制。我可能无法正确理解某些复杂的语境或隐喻。 |
|
|
|
2. 缺乏人类的情感:虽然我可以模拟人类的语言,但我缺乏真正的人类情感。这意味着我可能无法理解某些情感上的细微差异,或者无法与人类建立深入的关系。 |
|
|
|
3. 数据偏见:我的训练数据可能存在偏见,这可能导致我的输出也存在偏见。例如,如果我的训练数据中缺少某个群体的信息,那么我可能无法准确地回答该群体相关的问题。 |
|
|
|
4. 缺乏创造力:虽然我可以生成一些文本,但是我的创造力仍然受到一定的限制。我可能无法像人类一样产生新的想法或创新解决方案。 |
|
|
|
总之,虽然我是一个强大的工具,但我仍然存在一些缺陷和局限性。 |
|
``` |
|
|