Type_of_relation / README.md
SADAF-IMAMU's picture
End of training
fcf5622
|
raw
history blame
3.1 kB
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: Type_of_relation
    results: []

Type_of_relation

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3454
  • Macro F1: 0.7875
  • Precision: 0.7834
  • Recall: 0.7949
  • Kappa: 0.6913
  • Accuracy: 0.7949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 25
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Macro F1 Precision Recall Kappa Accuracy
1.1521 1.0 697 0.7730 0.7668 0.7492 0.7976 0.6831 0.7976
0.7985 2.0 1395 0.7075 0.7817 0.7674 0.8003 0.6965 0.8003
0.6333 3.0 2092 0.7101 0.7840 0.7793 0.8078 0.7023 0.8078
0.5307 4.0 2790 0.7471 0.7797 0.7779 0.7989 0.6929 0.7989
0.447 5.0 3487 0.7967 0.7826 0.7765 0.7951 0.6916 0.7951
0.304 6.0 4185 0.8912 0.7884 0.7836 0.7976 0.6961 0.7976
0.2597 7.0 4882 0.9286 0.7872 0.7820 0.7962 0.6925 0.7962
0.1859 8.0 5580 1.0321 0.7887 0.7845 0.7996 0.6963 0.7996
0.1542 9.0 6277 1.0918 0.7840 0.7801 0.7926 0.6879 0.7926
0.135 10.0 6975 1.1611 0.7884 0.7825 0.8035 0.6988 0.8035
0.0894 11.0 7672 1.2353 0.7866 0.7862 0.7911 0.6871 0.7911
0.084 12.0 8370 1.2618 0.7875 0.7832 0.7965 0.6920 0.7965
0.0595 13.0 9067 1.3147 0.7847 0.7836 0.7879 0.6844 0.7879
0.0472 14.0 9765 1.3424 0.7872 0.7839 0.7942 0.6897 0.7942
0.0422 14.99 10455 1.3454 0.7875 0.7834 0.7949 0.6913 0.7949

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.1.0+cu118
  • Tokenizers 0.15.0