|
--- |
|
language: |
|
- en |
|
thumbnail: url to a thumbnail used in social sharing |
|
tags: |
|
- ArguGPT |
|
license: mit |
|
datasets: |
|
- SJTU-CL/ArguGPT |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# ArguGPT |
|
|
|
RoBERTa-large finetuned on ArguGPT essays. |
|
|
|
- label 1 for machine generated essays |
|
- label 0 for human written essays |
|
|
|
**Please truncate your input essay to 512 tokens** |
|
|
|
## Citation |
|
|
|
Please cite our work [arXiv:2304.07666](https://arxiv.org/abs/2304.07666) as |
|
|
|
``` |
|
@misc{liu2023argugpt, |
|
title={ArguGPT: evaluating, understanding and identifying argumentative essays generated by GPT models}, |
|
author={Yikang Liu and Ziyin Zhang and Wanyang Zhang and Shisen Yue and Xiaojing Zhao and Xinyuan Cheng and Yiwen Zhang and Hai Hu}, |
|
year={2023}, |
|
eprint={2304.07666}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |