SLPL
/

Sharif-wav2vec2 / README.md
sadrasabouri's picture
Update README.md
828771f
|
raw
history blame
2.4 kB
---
language: fa
datasets:
- common_voice_6_1
tags:
- audio
- automatic-speech-recognition
license: mit
widget:
- example_title: Common Voice Sample 1
src: https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/0/audio/audio.mp3
- example_title: Common Voice Sample 2
src: https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/1/audio/audio.mp3
model-index:
- name: Sharif-wav2vec2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Corpus 6.1 (clean)
type: common_voice_6_1
config: clean
split: test
args:
language: fa
metrics:
- name: Test WER
type: wer
value: 6.0
---
# Sharif-wav2vec2
This is the fine-tuned version of Sharif Wav2vec2 for Farsi. The base model was fine-tuned on 108 hours of Commonvoice's Farsi samples with a sampling rate equal to 16kHz. Afterward, we trained a 5gram using [kenlm](https://github.com/kpu/kenlm) toolkit and used it in the processor which increased our accuracy on online ASR. When using the model make sure that your speech input is sampled at 16Khz. Prior to the usage, you may need to install the below dependencies:
```shell
pip install pyctcdecode
pip install pypi-kenlm
```
For testing you can use the hoster API at the hugging face (There are provided examples from common voice) it may take a while to transcribe the given voice. Or you can use the bellow code for a local run:
```python
import tensorflow
import torchaudio
import torch
import numpy as np
from transformers import AutoProcessor, AutoModelForCTC
processor = AutoProcessor.from_pretrained("SLPL/Sharif-wav2vec2")
model = AutoModelForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
speech_array, sampling_rate = torchaudio.load("path/to/your.wav")
speech_array = speech_array.squeeze().numpy()
features = processor(
speech_array,
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
padding=True)
with torch.no_grad():
logits = model(
features.input_values,
attention_mask=features.attention_mask).logits
prediction = processor.batch_decode(logits.numpy()).text
print(prediction[0])
# تست
```
*Result (WER)*:
| "clean" | "other" |
|---|---|
| 3.4 | 8.6 |
## Citation
If you want to cite this model you can use this:
```bibtex
?
```