Sagicc's picture
End of training
98efb8d
metadata
language:
  - sr
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Medium Sr Fleurs
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: sr_rs
          split: test
          args: sr_rs
        metrics:
          - name: Wer
            type: wer
            value: 0.17942107976725344

Whisper Medium Sr Fleurs

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3577
  • Wer Ortho: 0.2072
  • Wer: 0.1794

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0341 2.49 500 0.2704 0.2074 0.1789
0.0109 4.98 1000 0.3091 0.2075 0.1774
0.006 7.46 1500 0.3143 0.2031 0.1713
0.0081 9.95 2000 0.3284 0.2070 0.1754
0.0038 12.44 2500 0.3426 0.2099 0.1805
0.0042 14.93 3000 0.3630 0.2113 0.1821
0.0032 17.41 3500 0.3659 0.2089 0.1791
0.0046 19.9 4000 0.3577 0.2072 0.1794

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3