Neptuno-Alpha / README.md
Sakalti's picture
Adding Evaluation Results
ad74c9a verified
|
raw
history blame
4.05 kB
metadata
license: other
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - bunnycore/Qwen2.5-3B-RP-Mix
  - Sakalti/Neptuno-3B
license_name: qwen-research
inference: true
model-index:
  - name: Neptuno-Alpha
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 37.8
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sakalti/Neptuno-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 29.03
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sakalti/Neptuno-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 13.82
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sakalti/Neptuno-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.61
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sakalti/Neptuno-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.9
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sakalti/Neptuno-Alpha
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 30.75
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sakalti/Neptuno-Alpha
          name: Open LLM Leaderboard

Built With Qwen

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the TIES merge method using Sakalti/Neptuno-3B as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: bunnycore/Qwen2.5-3B-RP-Mix
    parameters:
      weight: 1
      density: 1
merge_method: ties
base_model: Sakalti/Neptuno-3B
parameters:
  weight: 1
  density: 1
  normalize: true
  int8_mask: true
dtype: float16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 21.98
IFEval (0-Shot) 37.80
BBH (3-Shot) 29.03
MATH Lvl 5 (4-Shot) 13.82
GPQA (0-shot) 7.61
MuSR (0-shot) 12.90
MMLU-PRO (5-shot) 30.75