[AgentOhana Paper] | [Github] | [Discord] | [Homepage] | [Community Demo]
License: cc-by-nc-4.0
If you already know Mixtral, xLAM-v0.1 is a significant upgrade and better at many things. For the same number of parameters, the model have been fine-tuned across a wide range of agent tasks and scenarios, all while preserving the capabilities of the original model.
xLAM-v0.1-r represents the version 0.1 of the Large Action Model series, with the "-r" indicating it's tagged for research. This model is compatible with VLLM and FastChat platforms.
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Salesforce/xLAM-v0.1-r")
model = AutoModelForCausalLM.from_pretrained("Salesforce/xLAM-v0.1-r", device_map="auto")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
outputs = model.generate(inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
You may need to tune the Temperature setting for different applications. Typically, a lower Temperature is helpful for tasks that require deterministic outcomes. Additionally, for tasks demanding adherence to specific formats or function calls, explicitly including formatting instructions is advisable.
Benchmarks
BOLAA
Webshop
LLM Name | ZS | ZST | ReaAct | PlanAct | PlanReAct | BOLAA |
---|---|---|---|---|---|---|
Llama-2-70B-chat | 0.0089 | 0.0102 | 0.4273 | 0.2809 | 0.3966 | 0.4986 |
Vicuna-33B | 0.1527 | 0.2122 | 0.1971 | 0.3766 | 0.4032 | 0.5618 |
Mixtral-8x7B-Instruct-v0.1 | 0.4634 | 0.4592 | 0.5638 | 0.4738 | 0.3339 | 0.5342 |
GPT-3.5-Turbo | 0.4851 | 0.5058 | 0.5047 | 0.4930 | 0.5436 | 0.6354 |
GPT-3.5-Turbo-Instruct | 0.3785 | 0.4195 | 0.4377 | 0.3604 | 0.4851 | 0.5811 |
GPT-4-0613 | 0.5002 | 0.4783 | 0.4616 | 0.7950 | 0.4635 | 0.6129 |
xLAM-v0.1-r | 0.5201 | 0.5268 | 0.6486 | 0.6573 | 0.6611 | 0.6556 |
HotpotQA
LLM Name | ZS | ZST | ReaAct | PlanAct | PlanReAct |
---|---|---|---|---|---|
Mixtral-8x7B-Instruct-v0.1 | 0.3912 | 0.3971 | 0.3714 | 0.3195 | 0.3039 |
GPT-3.5-Turbo | 0.4196 | 0.3937 | 0.3868 | 0.4182 | 0.3960 |
GPT-4-0613 | 0.5801 | 0.5709 | 0.6129 | 0.5778 | 0.5716 |
xLAM-v0.1-r | 0.5492 | 0.4776 | 0.5020 | 0.5583 | 0.5030 |
AgentLite
Please note: All prompts provided by AgentLite are considered "unseen prompts" for xLAM-v0.1-r, meaning the model has not been trained with data related to these prompts.
Webshop
LLM Name | Act | ReAct | BOLAA |
---|---|---|---|
GPT-3.5-Turbo-16k | 0.6158 | 0.6005 | 0.6652 |
GPT-4-0613 | 0.6989 | 0.6732 | 0.7154 |
xLAM-v0.1-r | 0.6563 | 0.6640 | 0.6854 |
HotpotQA
Easy | Medium | Hard | ||||
---|---|---|---|---|---|---|
LLM Name | F1 Score | Accuracy | F1 Score | Accuracy | F1 Score | Accuracy |
GPT-3.5-Turbo-16k-0613 | 0.410 | 0.350 | 0.330 | 0.25 | 0.283 | 0.20 |
GPT-4-0613 | 0.611 | 0.47 | 0.610 | 0.480 | 0.527 | 0.38 |
xLAM-v0.1-r | 0.532 | 0.45 | 0.547 | 0.46 | 0.455 | 0.36 |
ToolBench
LLM Name | Unseen Insts & Same Set | Unseen Tools & Seen Cat | Unseen Tools & Unseen Cat |
---|---|---|---|
TooLlama V2 | 0.4385 | 0.4300 | 0.4350 |
GPT-3.5-Turbo-0125 | 0.5000 | 0.5150 | 0.4900 |
GPT-4-0125-preview | 0.5462 | 0.5450 | 0.5050 |
xLAM-v0.1-r | 0.5077 | 0.5650 | 0.5200 |
MINT-BENCH
LLM Name | 1-step | 2-step | 3-step | 4-step | 5-step |
---|---|---|---|---|---|
GPT-4-0613 | - | - | - | - | 69.45 |
Claude-Instant-1 | 12.12 | 32.25 | 39.25 | 44.37 | 45.90 |
xLAM-v0.1-r | 4.10 | 28.50 | 36.01 | 42.66 | 43.96 |
Claude-2 | 26.45 | 35.49 | 36.01 | 39.76 | 39.93 |
Lemur-70b-Chat-v1 | 3.75 | 26.96 | 35.67 | 37.54 | 37.03 |
GPT-3.5-Turbo-0613 | 2.73 | 16.89 | 24.06 | 31.74 | 36.18 |
AgentLM-70b | 6.48 | 17.75 | 24.91 | 28.16 | 28.67 |
CodeLlama-34b | 0.17 | 16.21 | 23.04 | 25.94 | 28.16 |
Llama-2-70b-chat | 4.27 | 14.33 | 15.70 | 16.55 | 17.92 |
Tool-Query
LLM Name | Success Rate | Progress Rate |
---|---|---|
xLAM-v0.1-r | 0.533 | 0.766 |
DeepSeek-67B | 0.400 | 0.714 |
GPT-3.5-Turbo-0613 | 0.367 | 0.627 |
GPT-3.5-Turbo-16k | 0.317 | 0.591 |
Lemur-70B | 0.283 | 0.720 |
CodeLlama-13B | 0.250 | 0.525 |
CodeLlama-34B | 0.133 | 0.600 |
Mistral-7B | 0.033 | 0.510 |
Vicuna-13B-16K | 0.033 | 0.343 |
Llama-2-70B | 0.000 | 0.483 |
- Downloads last month
- 209