|
--- |
|
license: mit |
|
base_model: microsoft/deberta-base |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: INTENT |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# INTENT |
|
This is intent classification for customer order service, |
|
|
|
Features such as placing, Tracking and managment of orders, |
|
Handles payment issues such as making and refund of payment |
|
Options for delivery , address for shipping and also account management like password change, update account and delete account |
|
Options for contacting human agent |
|
|
|
You can also sends complaints here |
|
|
|
model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0084 |
|
- Train Accuracy: 0.9987 |
|
- Validation Loss: 0.0019 |
|
- Validation Accuracy: 0.9995 |
|
- Epoch: 1 |
|
|
|
## Model description |
|
Enter intent , you will get the label number depicting the intent |
|
'get_refund': 0, |
|
'change_order': 1, |
|
'contact_customer_service': 2, |
|
'recover_password': 3, |
|
'create_account': 4, |
|
'check_invoices': 5, |
|
'payment_issue': 6, |
|
'place_order': 7, |
|
'delete_account': 8, |
|
'set_up_shipping_address': 9, |
|
'delivery_options': 10, |
|
'track_order': 11, |
|
'change_shipping_address': 12, |
|
'track_refund': 13, |
|
'check_refund_policy': 14, |
|
'review': 15, |
|
'contact_human_agent': 16, |
|
'delivery_period': 17, |
|
'edit_account': 18, |
|
'registration_problems': 19, |
|
'get_invoice': 20, |
|
'switch_account': 21, |
|
'cancel_order': 22, |
|
'check_payment_methods': 23, |
|
'check_cancellation_fee': 24, |
|
'newsletter_subscription': 25, |
|
'complaint': 26 |
|
|
|
|
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2690, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |
|
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:| |
|
| 0.2113 | 0.9544 | 0.0056 | 0.9995 | 0 | |
|
| 0.0084 | 0.9987 | 0.0019 | 0.9995 | 1 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|