metadata
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: segformer-finetuned-tt-1000-2k
results: []
segformer-finetuned-tt-1000-2k
This model is a fine-tuned version of nvidia/mit-b0 on the Saumya-Mundra/text255 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0976
- Mean Iou: 0.4895
- Mean Accuracy: 0.9790
- Overall Accuracy: 0.9790
- Accuracy Text: nan
- Accuracy No Text: 0.9790
- Iou Text: 0.0
- Iou No Text: 0.9790
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Text | Accuracy No Text | Iou Text | Iou No Text |
---|---|---|---|---|---|---|---|---|---|---|
0.3719 | 1.0 | 125 | 0.1986 | 0.4842 | 0.9684 | 0.9684 | nan | 0.9684 | 0.0 | 0.9684 |
0.2348 | 2.0 | 250 | 0.1336 | 0.4932 | 0.9864 | 0.9864 | nan | 0.9864 | 0.0 | 0.9864 |
0.183 | 3.0 | 375 | 0.1268 | 0.4874 | 0.9747 | 0.9747 | nan | 0.9747 | 0.0 | 0.9747 |
0.1485 | 4.0 | 500 | 0.1114 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
0.1429 | 5.0 | 625 | 0.1122 | 0.4878 | 0.9757 | 0.9757 | nan | 0.9757 | 0.0 | 0.9757 |
0.1367 | 6.0 | 750 | 0.1075 | 0.4917 | 0.9834 | 0.9834 | nan | 0.9834 | 0.0 | 0.9834 |
0.1333 | 7.0 | 875 | 0.1048 | 0.4897 | 0.9793 | 0.9793 | nan | 0.9793 | 0.0 | 0.9793 |
0.1199 | 8.0 | 1000 | 0.1009 | 0.4888 | 0.9776 | 0.9776 | nan | 0.9776 | 0.0 | 0.9776 |
0.1201 | 9.0 | 1125 | 0.1000 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
0.1111 | 10.0 | 1250 | 0.0998 | 0.4904 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
0.1128 | 11.0 | 1375 | 0.0984 | 0.4896 | 0.9792 | 0.9792 | nan | 0.9792 | 0.0 | 0.9792 |
0.1055 | 12.0 | 1500 | 0.0941 | 0.4918 | 0.9835 | 0.9835 | nan | 0.9835 | 0.0 | 0.9835 |
0.0988 | 13.0 | 1625 | 0.0972 | 0.4907 | 0.9815 | 0.9815 | nan | 0.9815 | 0.0 | 0.9815 |
0.0983 | 14.0 | 1750 | 0.0947 | 0.4921 | 0.9843 | 0.9843 | nan | 0.9843 | 0.0 | 0.9843 |
0.1045 | 15.0 | 1875 | 0.0960 | 0.4897 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 | 0.9794 |
0.1002 | 16.0 | 2000 | 0.0976 | 0.4895 | 0.9790 | 0.9790 | nan | 0.9790 | 0.0 | 0.9790 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0