metadata
language: tr
datasets:
- TurEV
tags:
- audio
- speech
- speech-emotion-recognition
license: apache-2.0
pipeline_tag: audio-classification
Emotion Recognition in Turkish Speech using HuBERT
This HuBERT model is trained on TurEV-DB to achieve speech emotion recognition (SER) in Turkish.
How to use
Requirements
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!git clone https://github.com/SeaBenSea/HuBERT-SER.git
Prediction
import sys
sys.path.insert(1, './HuBERT-SER/')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification
model_name_or_path = "SeaBenSea/hubert-large-turkish-speech-emotion-recognition"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in
enumerate(scores)]
return outputs
path = "../dataset/TurEV/Angry/1157_kz_acik.wav"
outputs = predict(path, sampling_rate)
outputs
[
{'Emotion': 'Angry', 'Score': '99.8%'},
{'Emotion': 'Calm', 'Score': '0.0%'},
{'Emotion': 'Happy', 'Score': '0.1%'},
{'Emotion': 'Sad', 'Score': '0.1%'}
]
Evaluation
The following tables summarize the scores obtained by model overall and per each class.
Emotions | precision | recall | f1-score | accuracy |
---|---|---|---|---|
Angry | 0.97 | 0.99 | 0.98 | |
Calm | 0.89 | 0.95 | 0.92 | |
Happy | 0.98 | 0.93 | 0.95 | |
Sad | 0.97 | 0.93 | 0.95 | |
Overal | 0.95 |
Questions?
Post a Github issue from HERE.