Converted from mistral-community/pixtral-12b using BitsAndBytes with NF4 (4-bit) quantization. Not using double quantization.
Requires bitsandbytes
to load.
Example usage for image captioning:
from transformers import LlavaForConditionalGeneration, AutoProcessor, BitsAndBytesConfig
from PIL import Image
import time
# Load model
model_id = "SeanScripts/pixtral-12b-nf4"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
use_safetensors=True,
device_map="cuda:0"
)
# Load tokenizer
processor = AutoProcessor.from_pretrained(model_id)
# Caption a local image
IMG_URLS = [Image.open("test.png").convert("RGB")]
PROMPT = "<s>[INST]Caption this image:\n[IMG][/INST]"
inputs = processor(images=IMG_URLS, text=PROMPT, return_tensors="pt").to("cuda")
prompt_tokens = len(inputs['input_ids'][0])
print(f"Prompt tokens: {prompt_tokens}")
t0 = time.time()
generate_ids = model.generate(**inputs, max_new_tokens=512)
t1 = time.time()
total_time = t1 - t0
generated_tokens = len(generate_ids[0]) - prompt_tokens
time_per_token = generated_tokens/total_time
print(f"Generated {generated_tokens} tokens in {total_time:.3f} s ({time_per_token:.3f} tok/s)")
output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(output)
On a 4090, this is getting about 10 - 12 tok/s (without flash attention) and the captions seem pretty good, though I haven't tested very many. It uses about 10 GB VRAM.
You can get a set of ComfyUI custom nodes for running this model here: https://github.com/SeanScripts/ComfyUI-PixtralLlamaVision
- Downloads last month
- 635
Inference API (serverless) does not yet support transformers models for this pipeline type.
Model tree for SeanScripts/pixtral-12b-nf4
Base model
mistral-community/pixtral-12b