lmv2-g-receipts4 / README.md
Sebabrata's picture
update model card README.md
d841789
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: lmv2-g-receipts4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lmv2-g-receipts4
This model is a fine-tuned version of [microsoft/layoutlmv2-large-uncased](https://huggingface.co/microsoft/layoutlmv2-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3037
- Purchase Time Precision: 0.8868
- Purchase Time Recall: 0.94
- Purchase Time F1: 0.9126
- Purchase Time Number: 50
- Receipt Date Precision: 0.8272
- Receipt Date Recall: 0.8590
- Receipt Date F1: 0.8428
- Receipt Date Number: 78
- Sub Total Precision: 0.8333
- Sub Total Recall: 0.7778
- Sub Total F1: 0.8046
- Sub Total Number: 45
- Supplier Address Precision: 0.6981
- Supplier Address Recall: 0.8409
- Supplier Address F1: 0.7629
- Supplier Address Number: 44
- Supplier Name Precision: 0.7540
- Supplier Name Recall: 0.7851
- Supplier Name F1: 0.7692
- Supplier Name Number: 121
- Tip Amount Precision: 1.0
- Tip Amount Recall: 1.0
- Tip Amount F1: 1.0
- Tip Amount Number: 1
- Total Precision: 0.9348
- Total Recall: 0.9348
- Total F1: 0.9348
- Total Number: 92
- Total Tax Amount Precision: 0.8438
- Total Tax Amount Recall: 0.8438
- Total Tax Amount F1: 0.8438
- Total Tax Amount Number: 32
- Overall Precision: 0.8229
- Overall Recall: 0.8531
- Overall F1: 0.8378
- Overall Accuracy: 0.9794
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Purchase Time Precision | Purchase Time Recall | Purchase Time F1 | Purchase Time Number | Receipt Date Precision | Receipt Date Recall | Receipt Date F1 | Receipt Date Number | Sub Total Precision | Sub Total Recall | Sub Total F1 | Sub Total Number | Supplier Address Precision | Supplier Address Recall | Supplier Address F1 | Supplier Address Number | Supplier Name Precision | Supplier Name Recall | Supplier Name F1 | Supplier Name Number | Tip Amount Precision | Tip Amount Recall | Tip Amount F1 | Tip Amount Number | Total Precision | Total Recall | Total F1 | Total Number | Total Tax Amount Precision | Total Tax Amount Recall | Total Tax Amount F1 | Total Tax Amount Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:---------------:|:------------:|:--------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.2363 | 1.0 | 892 | 0.1264 | 0.8519 | 0.92 | 0.8846 | 50 | 0.8214 | 0.8846 | 0.8519 | 78 | 0.7381 | 0.6889 | 0.7126 | 45 | 0.5636 | 0.7045 | 0.6263 | 44 | 0.6825 | 0.7107 | 0.6964 | 121 | 0.0 | 0.0 | 0.0 | 1 | 0.8737 | 0.9022 | 0.8877 | 92 | 0.8571 | 0.75 | 0.8000 | 32 | 0.7645 | 0.7991 | 0.7814 | 0.9724 |
| 0.0941 | 2.0 | 1784 | 0.1193 | 0.9592 | 0.94 | 0.9495 | 50 | 0.8293 | 0.8718 | 0.8500 | 78 | 0.6557 | 0.8889 | 0.7547 | 45 | 0.6042 | 0.6591 | 0.6304 | 44 | 0.7018 | 0.6612 | 0.6809 | 121 | 0.0 | 0.0 | 0.0 | 1 | 0.9167 | 0.8370 | 0.875 | 92 | 0.8710 | 0.8438 | 0.8571 | 32 | 0.7846 | 0.7948 | 0.7897 | 0.9774 |
| 0.0627 | 3.0 | 2676 | 0.1328 | 0.9057 | 0.96 | 0.9320 | 50 | 0.8023 | 0.8846 | 0.8415 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.6481 | 0.7955 | 0.7143 | 44 | 0.6761 | 0.7934 | 0.7300 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9639 | 0.8696 | 0.9143 | 92 | 0.8710 | 0.8438 | 0.8571 | 32 | 0.7883 | 0.8445 | 0.8154 | 0.9784 |
| 0.0413 | 4.0 | 3568 | 0.1526 | 0.9216 | 0.94 | 0.9307 | 50 | 0.8193 | 0.8718 | 0.8447 | 78 | 0.6792 | 0.8 | 0.7347 | 45 | 0.62 | 0.7045 | 0.6596 | 44 | 0.7231 | 0.7769 | 0.7490 | 121 | 0.0 | 0.0 | 0.0 | 1 | 0.9130 | 0.9130 | 0.9130 | 92 | 0.7 | 0.875 | 0.7778 | 32 | 0.7776 | 0.8380 | 0.8067 | 0.9773 |
| 0.0334 | 5.0 | 4460 | 0.1755 | 0.9245 | 0.98 | 0.9515 | 50 | 0.8313 | 0.8846 | 0.8571 | 78 | 0.8043 | 0.8222 | 0.8132 | 45 | 0.5789 | 0.75 | 0.6535 | 44 | 0.7109 | 0.7521 | 0.7309 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9053 | 0.9348 | 0.9198 | 92 | 0.75 | 0.9375 | 0.8333 | 32 | 0.7873 | 0.8553 | 0.8199 | 0.9768 |
| 0.0258 | 6.0 | 5352 | 0.1885 | 0.9184 | 0.9 | 0.9091 | 50 | 0.8101 | 0.8205 | 0.8153 | 78 | 0.7292 | 0.7778 | 0.7527 | 45 | 0.5263 | 0.6818 | 0.5941 | 44 | 0.6667 | 0.7438 | 0.7031 | 121 | 0.0 | 0.0 | 0.0 | 1 | 0.9111 | 0.8913 | 0.9011 | 92 | 0.8235 | 0.875 | 0.8485 | 32 | 0.7602 | 0.8078 | 0.7832 | 0.9746 |
| 0.0186 | 7.0 | 6244 | 0.1609 | 0.9216 | 0.94 | 0.9307 | 50 | 0.8125 | 0.8333 | 0.8228 | 78 | 0.6481 | 0.7778 | 0.7071 | 45 | 0.7045 | 0.7045 | 0.7045 | 44 | 0.7188 | 0.7603 | 0.7390 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.8723 | 0.8913 | 0.8817 | 92 | 0.6905 | 0.9062 | 0.7838 | 32 | 0.7733 | 0.8251 | 0.7983 | 0.9779 |
| 0.0181 | 8.0 | 7136 | 0.1821 | 0.9375 | 0.9 | 0.9184 | 50 | 0.8312 | 0.8205 | 0.8258 | 78 | 0.7143 | 0.6667 | 0.6897 | 45 | 0.5536 | 0.7045 | 0.62 | 44 | 0.6667 | 0.7438 | 0.7031 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9111 | 0.8913 | 0.9011 | 92 | 0.7568 | 0.875 | 0.8116 | 32 | 0.7634 | 0.8013 | 0.7819 | 0.9763 |
| 0.0128 | 9.0 | 8028 | 0.2082 | 0.9057 | 0.96 | 0.9320 | 50 | 0.8193 | 0.8718 | 0.8447 | 78 | 0.68 | 0.7556 | 0.7158 | 45 | 0.7447 | 0.7955 | 0.7692 | 44 | 0.7381 | 0.7686 | 0.7530 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9425 | 0.8913 | 0.9162 | 92 | 0.7778 | 0.875 | 0.8235 | 32 | 0.8054 | 0.8402 | 0.8224 | 0.9778 |
| 0.0107 | 10.0 | 8920 | 0.1934 | 0.9184 | 0.9 | 0.9091 | 50 | 0.8333 | 0.8333 | 0.8333 | 78 | 0.7381 | 0.6889 | 0.7126 | 45 | 0.6809 | 0.7273 | 0.7033 | 44 | 0.744 | 0.7686 | 0.7561 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9425 | 0.8913 | 0.9162 | 92 | 0.7317 | 0.9375 | 0.8219 | 32 | 0.8064 | 0.8186 | 0.8124 | 0.9788 |
| 0.0108 | 11.0 | 9812 | 0.2336 | 0.9184 | 0.9 | 0.9091 | 50 | 0.825 | 0.8462 | 0.8354 | 78 | 0.6481 | 0.7778 | 0.7071 | 45 | 0.5893 | 0.75 | 0.6600 | 44 | 0.7328 | 0.7934 | 0.7619 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.8795 | 0.7935 | 0.8343 | 92 | 0.7879 | 0.8125 | 0.8 | 32 | 0.7700 | 0.8099 | 0.7895 | 0.9750 |
| 0.0069 | 12.0 | 10704 | 0.2376 | 0.9020 | 0.92 | 0.9109 | 50 | 0.7529 | 0.8205 | 0.7853 | 78 | 0.8095 | 0.7556 | 0.7816 | 45 | 0.7083 | 0.7727 | 0.7391 | 44 | 0.7154 | 0.7686 | 0.7410 | 121 | 0.0 | 0.0 | 0.0 | 1 | 0.9022 | 0.9022 | 0.9022 | 92 | 0.7179 | 0.875 | 0.7887 | 32 | 0.7844 | 0.8251 | 0.8042 | 0.9770 |
| 0.0071 | 13.0 | 11596 | 0.2467 | 0.9038 | 0.94 | 0.9216 | 50 | 0.8148 | 0.8462 | 0.8302 | 78 | 0.7917 | 0.8444 | 0.8172 | 45 | 0.68 | 0.7727 | 0.7234 | 44 | 0.752 | 0.7769 | 0.7642 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9195 | 0.8696 | 0.8939 | 92 | 0.7632 | 0.9062 | 0.8286 | 32 | 0.8071 | 0.8402 | 0.8233 | 0.9767 |
| 0.0052 | 14.0 | 12488 | 0.2818 | 0.92 | 0.92 | 0.92 | 50 | 0.7927 | 0.8333 | 0.8125 | 78 | 0.7778 | 0.7778 | 0.7778 | 45 | 0.7234 | 0.7727 | 0.7473 | 44 | 0.7015 | 0.7769 | 0.7373 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9535 | 0.8913 | 0.9213 | 92 | 0.8 | 0.875 | 0.8358 | 32 | 0.8021 | 0.8315 | 0.8165 | 0.9767 |
| 0.0072 | 15.0 | 13380 | 0.2193 | 0.8333 | 0.9 | 0.8654 | 50 | 0.8 | 0.8205 | 0.8101 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.6735 | 0.75 | 0.7097 | 44 | 0.7686 | 0.7686 | 0.7686 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9518 | 0.8587 | 0.9029 | 92 | 0.7317 | 0.9375 | 0.8219 | 32 | 0.8 | 0.8207 | 0.8102 | 0.9783 |
| 0.0049 | 16.0 | 14272 | 0.2457 | 0.92 | 0.92 | 0.92 | 50 | 0.7738 | 0.8333 | 0.8025 | 78 | 0.7308 | 0.8444 | 0.7835 | 45 | 0.6122 | 0.6818 | 0.6452 | 44 | 0.7480 | 0.7851 | 0.7661 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.8989 | 0.8696 | 0.8840 | 92 | 0.725 | 0.9062 | 0.8056 | 32 | 0.7805 | 0.8294 | 0.8042 | 0.9767 |
| 0.0055 | 17.0 | 15164 | 0.2359 | 0.8545 | 0.94 | 0.8952 | 50 | 0.8025 | 0.8333 | 0.8176 | 78 | 0.7273 | 0.7111 | 0.7191 | 45 | 0.6939 | 0.7727 | 0.7312 | 44 | 0.7661 | 0.7851 | 0.7755 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.8925 | 0.9022 | 0.8973 | 92 | 0.6905 | 0.9062 | 0.7838 | 32 | 0.7894 | 0.8337 | 0.8109 | 0.9780 |
| 0.0045 | 18.0 | 16056 | 0.2472 | 0.92 | 0.92 | 0.92 | 50 | 0.8101 | 0.8205 | 0.8153 | 78 | 0.7805 | 0.7111 | 0.7442 | 45 | 0.6735 | 0.75 | 0.7097 | 44 | 0.7402 | 0.7769 | 0.7581 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.8876 | 0.8587 | 0.8729 | 92 | 0.7368 | 0.875 | 0.8000 | 32 | 0.7954 | 0.8143 | 0.8047 | 0.9781 |
| 0.0052 | 19.0 | 16948 | 0.2287 | 0.8868 | 0.94 | 0.9126 | 50 | 0.7683 | 0.8077 | 0.7875 | 78 | 0.7857 | 0.7333 | 0.7586 | 45 | 0.6226 | 0.75 | 0.6804 | 44 | 0.7287 | 0.7769 | 0.7520 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9302 | 0.8696 | 0.8989 | 92 | 0.7073 | 0.9062 | 0.7945 | 32 | 0.7803 | 0.8207 | 0.8000 | 0.9765 |
| 0.0021 | 20.0 | 17840 | 0.2552 | 0.8824 | 0.9 | 0.8911 | 50 | 0.8025 | 0.8333 | 0.8176 | 78 | 0.775 | 0.6889 | 0.7294 | 45 | 0.6957 | 0.7273 | 0.7111 | 44 | 0.7541 | 0.7603 | 0.7572 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9318 | 0.8913 | 0.9111 | 92 | 0.7143 | 0.9375 | 0.8108 | 32 | 0.8025 | 0.8164 | 0.8094 | 0.9779 |
| 0.0027 | 21.0 | 18732 | 0.2547 | 0.8679 | 0.92 | 0.8932 | 50 | 0.8148 | 0.8462 | 0.8302 | 78 | 0.6552 | 0.8444 | 0.7379 | 45 | 0.6154 | 0.7273 | 0.6667 | 44 | 0.7661 | 0.7851 | 0.7755 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9 | 0.8804 | 0.8901 | 92 | 0.7436 | 0.9062 | 0.8169 | 32 | 0.7791 | 0.8380 | 0.8075 | 0.9780 |
| 0.0021 | 22.0 | 19624 | 0.2829 | 0.9020 | 0.92 | 0.9109 | 50 | 0.8 | 0.8205 | 0.8101 | 78 | 0.7660 | 0.8 | 0.7826 | 45 | 0.6364 | 0.7955 | 0.7071 | 44 | 0.7460 | 0.7769 | 0.7611 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9022 | 0.9022 | 0.9022 | 92 | 0.6905 | 0.9062 | 0.7838 | 32 | 0.7854 | 0.8380 | 0.8109 | 0.9756 |
| 0.0022 | 23.0 | 20516 | 0.2834 | 0.8333 | 0.9 | 0.8654 | 50 | 0.8025 | 0.8333 | 0.8176 | 78 | 0.72 | 0.8 | 0.7579 | 45 | 0.6140 | 0.7955 | 0.6931 | 44 | 0.736 | 0.7603 | 0.7480 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9111 | 0.8913 | 0.9011 | 92 | 0.7692 | 0.9375 | 0.8451 | 32 | 0.7767 | 0.8337 | 0.8042 | 0.9737 |
| 0.0016 | 24.0 | 21408 | 0.2631 | 0.9020 | 0.92 | 0.9109 | 50 | 0.8101 | 0.8205 | 0.8153 | 78 | 0.7447 | 0.7778 | 0.7609 | 45 | 0.6471 | 0.75 | 0.6947 | 44 | 0.7308 | 0.7851 | 0.7570 | 121 | 0.5 | 1.0 | 0.6667 | 1 | 0.9310 | 0.8804 | 0.9050 | 92 | 0.725 | 0.9062 | 0.8056 | 32 | 0.7885 | 0.8294 | 0.8084 | 0.9785 |
| 0.0035 | 25.0 | 22300 | 0.2889 | 0.8868 | 0.94 | 0.9126 | 50 | 0.8025 | 0.8333 | 0.8176 | 78 | 0.6481 | 0.7778 | 0.7071 | 45 | 0.625 | 0.7955 | 0.7 | 44 | 0.7068 | 0.7769 | 0.7402 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9412 | 0.8696 | 0.9040 | 92 | 0.7692 | 0.9375 | 0.8451 | 32 | 0.7709 | 0.8359 | 0.8021 | 0.9764 |
| 0.0022 | 26.0 | 23192 | 0.3023 | 0.8545 | 0.94 | 0.8952 | 50 | 0.8519 | 0.8846 | 0.8679 | 78 | 0.6379 | 0.8222 | 0.7184 | 45 | 0.5862 | 0.7727 | 0.6667 | 44 | 0.6763 | 0.7769 | 0.7231 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9213 | 0.8913 | 0.9061 | 92 | 0.7436 | 0.9062 | 0.8169 | 32 | 0.7558 | 0.8488 | 0.7996 | 0.9742 |
| 0.0024 | 27.0 | 24084 | 0.2836 | 0.9020 | 0.92 | 0.9109 | 50 | 0.8442 | 0.8333 | 0.8387 | 78 | 0.7447 | 0.7778 | 0.7609 | 45 | 0.6731 | 0.7955 | 0.7292 | 44 | 0.7308 | 0.7851 | 0.7570 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9412 | 0.8696 | 0.9040 | 92 | 0.75 | 0.9375 | 0.8333 | 32 | 0.8012 | 0.8359 | 0.8182 | 0.9787 |
| 0.0015 | 28.0 | 24976 | 0.2825 | 0.8246 | 0.94 | 0.8785 | 50 | 0.825 | 0.8462 | 0.8354 | 78 | 0.7333 | 0.7333 | 0.7333 | 45 | 0.7045 | 0.7045 | 0.7045 | 44 | 0.7949 | 0.7686 | 0.7815 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9176 | 0.8478 | 0.8814 | 92 | 0.7 | 0.875 | 0.7778 | 32 | 0.8038 | 0.8143 | 0.8090 | 0.9784 |
| 0.0011 | 29.0 | 25868 | 0.2815 | 0.8519 | 0.92 | 0.8846 | 50 | 0.8375 | 0.8590 | 0.8481 | 78 | 0.6545 | 0.8 | 0.7200 | 45 | 0.6731 | 0.7955 | 0.7292 | 44 | 0.7769 | 0.7769 | 0.7769 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.8925 | 0.9022 | 0.8973 | 92 | 0.7368 | 0.875 | 0.8000 | 32 | 0.7895 | 0.8423 | 0.8150 | 0.9775 |
| 0.001 | 30.0 | 26760 | 0.2851 | 0.8545 | 0.94 | 0.8952 | 50 | 0.8171 | 0.8590 | 0.8375 | 78 | 0.7083 | 0.7556 | 0.7312 | 45 | 0.7174 | 0.75 | 0.7333 | 44 | 0.75 | 0.7934 | 0.7711 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9101 | 0.8804 | 0.8950 | 92 | 0.7568 | 0.875 | 0.8116 | 32 | 0.7963 | 0.8359 | 0.8156 | 0.9791 |
| 0.0009 | 31.0 | 27652 | 0.2652 | 0.8679 | 0.92 | 0.8932 | 50 | 0.8228 | 0.8333 | 0.8280 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.7391 | 0.7727 | 0.7556 | 44 | 0.7638 | 0.8017 | 0.7823 | 121 | 0.5 | 1.0 | 0.6667 | 1 | 0.9213 | 0.8913 | 0.9061 | 92 | 0.7647 | 0.8125 | 0.7879 | 32 | 0.8109 | 0.8337 | 0.8222 | 0.9807 |
| 0.0008 | 32.0 | 28544 | 0.2681 | 0.8727 | 0.96 | 0.9143 | 50 | 0.8481 | 0.8590 | 0.8535 | 78 | 0.68 | 0.7556 | 0.7158 | 45 | 0.7143 | 0.7955 | 0.7527 | 44 | 0.7863 | 0.7603 | 0.7731 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9101 | 0.8804 | 0.8950 | 92 | 0.7941 | 0.8438 | 0.8182 | 32 | 0.8122 | 0.8315 | 0.8218 | 0.9805 |
| 0.0009 | 33.0 | 29436 | 0.2700 | 0.8654 | 0.9 | 0.8824 | 50 | 0.8272 | 0.8590 | 0.8428 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.6731 | 0.7955 | 0.7292 | 44 | 0.7385 | 0.7934 | 0.7649 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9140 | 0.9239 | 0.9189 | 92 | 0.8 | 0.875 | 0.8358 | 32 | 0.8 | 0.8467 | 0.8227 | 0.9794 |
| 0.0008 | 34.0 | 30328 | 0.2832 | 0.9 | 0.9 | 0.9 | 50 | 0.8354 | 0.8462 | 0.8408 | 78 | 0.75 | 0.8 | 0.7742 | 45 | 0.6471 | 0.75 | 0.6947 | 44 | 0.8051 | 0.7851 | 0.7950 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9333 | 0.9130 | 0.9231 | 92 | 0.8 | 0.875 | 0.8358 | 32 | 0.8220 | 0.8380 | 0.8299 | 0.9791 |
| 0.0009 | 35.0 | 31220 | 0.2778 | 0.92 | 0.92 | 0.92 | 50 | 0.8272 | 0.8590 | 0.8428 | 78 | 0.7347 | 0.8 | 0.7660 | 45 | 0.66 | 0.75 | 0.7021 | 44 | 0.7603 | 0.7603 | 0.7603 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9231 | 0.9130 | 0.9180 | 92 | 0.875 | 0.875 | 0.875 | 32 | 0.8147 | 0.8359 | 0.8252 | 0.9787 |
| 0.0004 | 36.0 | 32112 | 0.2885 | 0.8889 | 0.96 | 0.9231 | 50 | 0.8293 | 0.8718 | 0.8500 | 78 | 0.7955 | 0.7778 | 0.7865 | 45 | 0.6863 | 0.7955 | 0.7368 | 44 | 0.7983 | 0.7851 | 0.7917 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.8925 | 0.9022 | 0.8973 | 92 | 0.8438 | 0.8438 | 0.8438 | 32 | 0.8235 | 0.8467 | 0.8349 | 0.9795 |
| 0.0007 | 37.0 | 33004 | 0.2868 | 0.8868 | 0.94 | 0.9126 | 50 | 0.85 | 0.8718 | 0.8608 | 78 | 0.7660 | 0.8 | 0.7826 | 45 | 0.7727 | 0.7727 | 0.7727 | 44 | 0.7540 | 0.7851 | 0.7692 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9130 | 0.9130 | 0.9130 | 92 | 0.7941 | 0.8438 | 0.8182 | 32 | 0.8218 | 0.8467 | 0.8340 | 0.9796 |
| 0.003 | 38.0 | 33896 | 0.2946 | 0.8868 | 0.94 | 0.9126 | 50 | 0.8395 | 0.8718 | 0.8553 | 78 | 0.8 | 0.8 | 0.8000 | 45 | 0.7059 | 0.8182 | 0.7579 | 44 | 0.7705 | 0.7769 | 0.7737 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9130 | 0.9130 | 0.9130 | 92 | 0.7941 | 0.8438 | 0.8182 | 32 | 0.8205 | 0.8488 | 0.8344 | 0.9788 |
| 0.0007 | 39.0 | 34788 | 0.2761 | 0.8846 | 0.92 | 0.9020 | 50 | 0.8293 | 0.8718 | 0.8500 | 78 | 0.7447 | 0.7778 | 0.7609 | 45 | 0.7778 | 0.7955 | 0.7865 | 44 | 0.7661 | 0.7851 | 0.7755 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9222 | 0.9022 | 0.9121 | 92 | 0.7714 | 0.8438 | 0.8060 | 32 | 0.8193 | 0.8423 | 0.8307 | 0.9806 |
| 0.0004 | 40.0 | 35680 | 0.2942 | 0.9038 | 0.94 | 0.9216 | 50 | 0.8272 | 0.8590 | 0.8428 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.6923 | 0.8182 | 0.7500 | 44 | 0.7368 | 0.8099 | 0.7717 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9231 | 0.9130 | 0.9180 | 92 | 0.8182 | 0.8438 | 0.8308 | 32 | 0.8078 | 0.8531 | 0.8298 | 0.9785 |
| 0.0001 | 41.0 | 36572 | 0.2966 | 0.8519 | 0.92 | 0.8846 | 50 | 0.8171 | 0.8590 | 0.8375 | 78 | 0.72 | 0.8 | 0.7579 | 45 | 0.7447 | 0.7955 | 0.7692 | 44 | 0.7712 | 0.7521 | 0.7615 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.8737 | 0.9022 | 0.8877 | 92 | 0.7714 | 0.8438 | 0.8060 | 32 | 0.8008 | 0.8337 | 0.8169 | 0.9788 |
| 0.0003 | 42.0 | 37464 | 0.3037 | 0.8868 | 0.94 | 0.9126 | 50 | 0.8272 | 0.8590 | 0.8428 | 78 | 0.8333 | 0.7778 | 0.8046 | 45 | 0.6981 | 0.8409 | 0.7629 | 44 | 0.7540 | 0.7851 | 0.7692 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9348 | 0.9348 | 0.9348 | 92 | 0.8438 | 0.8438 | 0.8438 | 32 | 0.8229 | 0.8531 | 0.8378 | 0.9794 |
| 0.0001 | 43.0 | 38356 | 0.3135 | 0.8519 | 0.92 | 0.8846 | 50 | 0.8148 | 0.8462 | 0.8302 | 78 | 0.7447 | 0.7778 | 0.7609 | 45 | 0.7174 | 0.75 | 0.7333 | 44 | 0.7692 | 0.7438 | 0.7563 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9444 | 0.9239 | 0.9341 | 92 | 0.7714 | 0.8438 | 0.8060 | 32 | 0.8132 | 0.8272 | 0.8201 | 0.9785 |
| 0.0001 | 44.0 | 39248 | 0.3127 | 0.8868 | 0.94 | 0.9126 | 50 | 0.8148 | 0.8462 | 0.8302 | 78 | 0.7292 | 0.7778 | 0.7527 | 45 | 0.7 | 0.7955 | 0.7447 | 44 | 0.7966 | 0.7769 | 0.7866 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9222 | 0.9022 | 0.9121 | 92 | 0.7105 | 0.8438 | 0.7714 | 32 | 0.8100 | 0.8380 | 0.8238 | 0.9784 |
| 0.0003 | 45.0 | 40140 | 0.3167 | 0.9038 | 0.94 | 0.9216 | 50 | 0.8148 | 0.8462 | 0.8302 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.68 | 0.7727 | 0.7234 | 44 | 0.8034 | 0.7769 | 0.7899 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9333 | 0.9130 | 0.9231 | 92 | 0.7297 | 0.8438 | 0.7826 | 32 | 0.8186 | 0.8380 | 0.8282 | 0.9782 |
| 0.0004 | 46.0 | 41032 | 0.3189 | 0.8868 | 0.94 | 0.9126 | 50 | 0.825 | 0.8462 | 0.8354 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.7 | 0.7955 | 0.7447 | 44 | 0.7833 | 0.7769 | 0.7801 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9432 | 0.9022 | 0.9222 | 92 | 0.7297 | 0.8438 | 0.7826 | 32 | 0.8168 | 0.8380 | 0.8273 | 0.9777 |
| 0.0001 | 47.0 | 41924 | 0.3171 | 0.9216 | 0.94 | 0.9307 | 50 | 0.825 | 0.8462 | 0.8354 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.6667 | 0.7727 | 0.7158 | 44 | 0.7917 | 0.7851 | 0.7884 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9326 | 0.9022 | 0.9171 | 92 | 0.7297 | 0.8438 | 0.7826 | 32 | 0.8168 | 0.8380 | 0.8273 | 0.9779 |
| 0.0001 | 48.0 | 42816 | 0.3186 | 0.9216 | 0.94 | 0.9307 | 50 | 0.825 | 0.8462 | 0.8354 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.6667 | 0.7727 | 0.7158 | 44 | 0.7917 | 0.7851 | 0.7884 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9326 | 0.9022 | 0.9171 | 92 | 0.75 | 0.8438 | 0.7941 | 32 | 0.8186 | 0.8380 | 0.8282 | 0.9779 |
| 0.0001 | 49.0 | 43708 | 0.3165 | 0.9216 | 0.94 | 0.9307 | 50 | 0.825 | 0.8462 | 0.8354 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.6939 | 0.7727 | 0.7312 | 44 | 0.8051 | 0.7851 | 0.7950 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9326 | 0.9022 | 0.9171 | 92 | 0.7714 | 0.8438 | 0.8060 | 32 | 0.8273 | 0.8380 | 0.8326 | 0.9781 |
| 0.0001 | 50.0 | 44600 | 0.3158 | 0.9216 | 0.94 | 0.9307 | 50 | 0.825 | 0.8462 | 0.8354 | 78 | 0.7609 | 0.7778 | 0.7692 | 45 | 0.6939 | 0.7727 | 0.7312 | 44 | 0.8051 | 0.7851 | 0.7950 | 121 | 1.0 | 1.0 | 1.0 | 1 | 0.9326 | 0.9022 | 0.9171 | 92 | 0.7714 | 0.8438 | 0.8060 | 32 | 0.8273 | 0.8380 | 0.8326 | 0.9782 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.2.2
- Tokenizers 0.13.2