metadata
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large__sst2__train-16-3
results: []
deberta-v3-large__sst2__train-16-3
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6286
- Accuracy: 0.7068
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6955 | 1.0 | 7 | 0.7370 | 0.2857 |
0.6919 | 2.0 | 14 | 0.6855 | 0.4286 |
0.6347 | 3.0 | 21 | 0.5872 | 0.7143 |
0.4016 | 4.0 | 28 | 0.6644 | 0.7143 |
0.3097 | 5.0 | 35 | 0.5120 | 0.7143 |
0.0785 | 6.0 | 42 | 0.5845 | 0.7143 |
0.024 | 7.0 | 49 | 0.6951 | 0.7143 |
0.0132 | 8.0 | 56 | 0.8972 | 0.7143 |
0.0037 | 9.0 | 63 | 1.5798 | 0.7143 |
0.0034 | 10.0 | 70 | 1.5178 | 0.7143 |
0.003 | 11.0 | 77 | 1.3511 | 0.7143 |
0.0012 | 12.0 | 84 | 1.1346 | 0.7143 |
0.0007 | 13.0 | 91 | 0.9752 | 0.7143 |
0.0008 | 14.0 | 98 | 0.8531 | 0.7143 |
0.0007 | 15.0 | 105 | 0.8149 | 0.7143 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3