|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
base_model: microsoft/deberta-v3-large |
|
model-index: |
|
- name: deberta-v3-large__sst2__train-16-4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-large__sst2__train-16-4 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6329 |
|
- Accuracy: 0.6392 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6945 | 1.0 | 7 | 0.7381 | 0.2857 | |
|
| 0.7072 | 2.0 | 14 | 0.7465 | 0.2857 | |
|
| 0.6548 | 3.0 | 21 | 0.7277 | 0.4286 | |
|
| 0.5695 | 4.0 | 28 | 0.6738 | 0.5714 | |
|
| 0.4615 | 5.0 | 35 | 0.8559 | 0.5714 | |
|
| 0.0823 | 6.0 | 42 | 1.0983 | 0.5714 | |
|
| 0.0274 | 7.0 | 49 | 1.9937 | 0.5714 | |
|
| 0.0106 | 8.0 | 56 | 2.2209 | 0.5714 | |
|
| 0.0039 | 9.0 | 63 | 2.2114 | 0.5714 | |
|
| 0.0031 | 10.0 | 70 | 2.2808 | 0.5714 | |
|
| 0.0013 | 11.0 | 77 | 2.3707 | 0.5714 | |
|
| 0.0008 | 12.0 | 84 | 2.4902 | 0.5714 | |
|
| 0.0005 | 13.0 | 91 | 2.5208 | 0.5714 | |
|
| 0.0007 | 14.0 | 98 | 2.5683 | 0.5714 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.15.0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2 |
|
- Tokenizers 0.10.3 |
|
|