Edit model card

persian-clip

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7629

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
1.4072 0.12 100 2.1627
1.7146 0.25 200 1.6432
1.5058 0.37 300 1.4523
1.3836 0.49 400 1.4799
1.4946 0.62 500 1.3101
1.2544 0.74 600 1.2073
1.1984 0.86 700 1.1801
1.3243 0.99 800 1.1652
0.8373 1.11 900 1.0860
0.8625 1.23 1000 1.0731
0.791 1.36 1100 1.0427
0.8975 1.48 1200 1.0786
0.7767 1.6 1300 1.0248
0.9041 1.73 1400 1.0311
0.8474 1.85 1500 0.9649
0.7435 1.98 1600 0.9552
0.5126 2.1 1700 0.9909
0.4871 2.22 1800 0.9188
0.48 2.35 1900 0.9151
0.4715 2.47 2000 0.9056
0.408 2.59 2100 0.8885
0.4999 2.72 2200 0.8911
0.5169 2.84 2300 0.8727
0.3574 2.96 2400 0.8477
0.2749 3.09 2500 0.8666
0.2719 3.21 2600 0.8520
0.2779 3.33 2700 0.8379
0.3407 3.46 2800 0.8386
0.223 3.58 2900 0.8245
0.2649 3.7 3000 0.8149
0.2698 3.83 3100 0.7983
0.1863 3.95 3200 0.7959
0.1831 4.07 3300 0.7957
0.172 4.2 3400 0.7963
0.1457 4.32 3500 0.7879
0.1503 4.44 3600 0.7794
0.1783 4.57 3700 0.7788
0.166 4.69 3800 0.7753
0.1598 4.81 3900 0.7673
0.1618 4.94 4000 0.7629

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.10.1
  • Tokenizers 0.15.0

How to use?

# Both models generate vectors with 768 dimensions.
from transformers import CLIPVisionModel, RobertaModel, AutoTokenizer, CLIPFeatureExtractor
# download pre-trained models
vision_encoder = CLIPVisionModel.from_pretrained('SeyedAli/Persian-CLIP')
preprocessor = CLIPFeatureExtractor.from_pretrained('SeyedAli/Persian-CLIP')
text_encoder = RobertaModel.from_pretrained('SeyedAli/Persian-CLIP')
tokenizer = AutoTokenizer.from_pretrained('SeyedAli/Persian-CLIP')
# define input image and input text
text = 'something'
image = PIL.Image.open('my_favorite_image.jpg')
# compute embeddings
text_embedding = text_encoder(**tokenizer(text,
                                          return_tensors='pt')).pooler_output
image_embedding = vision_encoder(**preprocessor(image, 
                                                return_tensors='pt')).pooler_output

zero-shot-Image-Classification:

The followings are just some use cases of Persian-CLIP on 25K Unsplash images

from clipfa import CLIPDemo
import torch
# Both models generate vectors with 768 dimensions.
from transformers import CLIPVisionModel, RobertaModel, AutoTokenizer, CLIPFeatureExtractor
# download pre-trained models
vision_encoder = CLIPVisionModel.from_pretrained('SeyedAli/Persian-CLIP')
preprocessor = CLIPFeatureExtractor.from_pretrained('SeyedAli/Persian-CLIP')
text_encoder = RobertaModel.from_pretrained('SeyedAli/Persian-CLIP')
tokenizer = AutoTokenizer.from_pretrained('SeyedAli/Persian-CLIP')

demo = CLIPDemo(vision_encoder, text_encoder, tokenizer)
demo.compute_text_embeddings(['متن 3' ,'متن 2' ,'متن 1'])
demo.compute_image_embeddings(['my_favorite_image.jpg'])
demo.zero_shot(image_path='my_favorite_image.jpg') 
Downloads last month
3
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.