metadata
base_model: cointegrated/rubert-tiny2
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:13690
- loss:ContrastiveLoss
widget:
- source_sentence: >-
Грузоблочный тренажер Bronze Gym D-015 - жим ногами в Москве Силовые
тренажеры Грузоблочные Bronze Gym D-015 - жим ногами
sentences:
- >-
Трицепс-машина Matrix G3-S45 Главная Силовые тренажеры Трицепс-машина
Matrix G3-S45
- >-
Верхняя тяга Iron Bull IR-TE08 nan Силовые тренажеры Грузоблочные
тренажеры
- >-
Горизонтальный велоэргометр Matrix Lifestyle с консолью LED nan
Велотренажеры Matrix
- source_sentence: Эллиптический тренажер Precor EFX 731 nan Эллиптические тренажеры Precor
sentences:
- >-
Беговая дорожка коммерческая AeroFit X3-T 10″LCD в Москве
Кардиотренажеры Беговые дорожки AeroFit X3-T 10″LCD
- >-
Машина Смита Matrix G1-FW161 Главная Силовые тренажеры Машина Смита
Matrix G1-FW161
- >-
Эллиптический тренажер CardioPower X75 Главная Эллиптические тренажеры
Бренды
- source_sentence: Велотренажер Clear Fit Envy CFB 45 Ego Главная Велотренажеры Бренды
sentences:
- >-
Велотренажер Spirit Fitness MU100 реабилитационный в Москве
Кардиотренажеры Велотренажеры Spirit Fitness MU100 реабилитационный
- >-
Многофункциональная блочная станция Teca SP785C Две Гребных тяги nan
Силовые тренажеры Мультистанции
- Беговая дорожка Sports Art T670 Главная Беговые дорожки Бренды
- source_sentence: Горизонтальный велотренажер TRUE C400 Главная Велотренажеры Бренды
sentences:
- Велотренажер UltraGym UG-B002 nan Велотренажеры UltraGym
- >-
Грузоблочный тренажер Precor DSL505 - задние дельты/баттерфляй в Москве
Силовые тренажеры Грузоблочные Precor DSL505 - задние дельты/баттерфляй
- >-
Беговая дорожка Hasttings LCT80 Беговые дорожки Hasttings Hasttings
LCT80
- source_sentence: >-
Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая дорожка
Hasttings CT100
sentences:
- >-
Вертикальная тяга RangeMax CST-018 nan Силовые тренажеры Грузоблочные
тренажеры
- Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910
- Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды
model-index:
- name: SentenceTransformer based on cointegrated/rubert-tiny2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: cv
type: cv
metrics:
- type: cosine_accuracy
value: 1
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7240798473358154
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 1
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7240798473358154
name: Cosine F1 Threshold
- type: cosine_precision
value: 1
name: Cosine Precision
- type: cosine_recall
value: 1
name: Cosine Recall
- type: cosine_ap
value: 1
name: Cosine Ap
- type: dot_accuracy
value: 1
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7240797877311707
name: Dot Accuracy Threshold
- type: dot_f1
value: 1
name: Dot F1
- type: dot_f1_threshold
value: 0.7240797877311707
name: Dot F1 Threshold
- type: dot_precision
value: 1
name: Dot Precision
- type: dot_recall
value: 1
name: Dot Recall
- type: dot_ap
value: 1
name: Dot Ap
- type: manhattan_accuracy
value: 1
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.055404663085938
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 1
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.055404663085938
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 1
name: Manhattan Precision
- type: manhattan_recall
value: 1
name: Manhattan Recall
- type: manhattan_ap
value: 1
name: Manhattan Ap
- type: euclidean_accuracy
value: 1
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6519391536712646
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 1
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6519391536712646
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 1
name: Euclidean Precision
- type: euclidean_recall
value: 1
name: Euclidean Recall
- type: euclidean_ap
value: 1
name: Euclidean Ap
- type: max_accuracy
value: 1
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.055404663085938
name: Max Accuracy Threshold
- type: max_f1
value: 1
name: Max F1
- type: max_f1_threshold
value: 9.055404663085938
name: Max F1 Threshold
- type: max_precision
value: 1
name: Max Precision
- type: max_recall
value: 1
name: Max Recall
- type: max_ap
value: 1
name: Max Ap
SentenceTransformer based on cointegrated/rubert-tiny2
This is a sentence-transformers model finetuned from cointegrated/rubert-tiny2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cointegrated/rubert-tiny2
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 312 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая дорожка Hasttings CT100',
'Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды',
'Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
cv
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
cosine_accuracy_threshold | 0.7241 |
cosine_f1 | 1.0 |
cosine_f1_threshold | 0.7241 |
cosine_precision | 1.0 |
cosine_recall | 1.0 |
cosine_ap | 1.0 |
dot_accuracy | 1.0 |
dot_accuracy_threshold | 0.7241 |
dot_f1 | 1.0 |
dot_f1_threshold | 0.7241 |
dot_precision | 1.0 |
dot_recall | 1.0 |
dot_ap | 1.0 |
manhattan_accuracy | 1.0 |
manhattan_accuracy_threshold | 9.0554 |
manhattan_f1 | 1.0 |
manhattan_f1_threshold | 9.0554 |
manhattan_precision | 1.0 |
manhattan_recall | 1.0 |
manhattan_ap | 1.0 |
euclidean_accuracy | 1.0 |
euclidean_accuracy_threshold | 0.6519 |
euclidean_f1 | 1.0 |
euclidean_f1_threshold | 0.6519 |
euclidean_precision | 1.0 |
euclidean_recall | 1.0 |
euclidean_ap | 1.0 |
max_accuracy | 1.0 |
max_accuracy_threshold | 9.0554 |
max_f1 | 1.0 |
max_f1_threshold | 9.0554 |
max_precision | 1.0 |
max_recall | 1.0 |
max_ap | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 13,690 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 14 tokens
- mean: 29.13 tokens
- max: 66 tokens
- min: 13 tokens
- mean: 29.18 tokens
- max: 63 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence1 sentence2 score Велотренажер аэродинамический Spirit Fitness AB900+ Air Bike в Москве Кардиотренажеры Велотренажеры Spirit Fitness AB900+ Air Bike
Велотренажер IZHIMIO СL 1500 Главная Велотренажеры Бренды
1.0
Эллиптический тренажер Sports Art E835 Главная Эллиптические тренажеры Бренды
Степпер Matrix C7XI в Москве Кардиотренажеры Степперы Matrix C7XI
0.0
Мультистанция Nohrd SlimBeam nan Силовые тренажеры Мультистанции
Эллиптический тренажер Koenigsmann JX-170EF в Москве Кардиотренажеры Эллиптические тренажеры Koenigsmann JX-170EF
0.0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 28 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 28 samples:
sentence1 sentence2 score type string string float details - min: 15 tokens
- mean: 27.18 tokens
- max: 45 tokens
- min: 16 tokens
- mean: 28.0 tokens
- max: 47 tokens
- min: 0.0
- mean: 0.61
- max: 1.0
- Samples:
sentence1 sentence2 score Беговая дорожка Carbon Yukon Беговые дорожки Carbon Carbon Yukon
Беговая дорожка Hasttings LCT80 Беговые дорожки Hasttings Hasttings LCT80
1.0
Беговая дорожка Беговая дорожка DFC BOSS I T-B1 для реабилитации Беговые дорожки DFC Беговая дорожка DFC BOSS I T-B1 для реабилитации
Беговая дорожка EVO FITNESS Cosmo 5 Главная Беговые дорожки Бренды
1.0
Грузоблочный тренажер Precor C010ES - жим ногами/икроножные в Москве Силовые тренажеры Грузоблочные Precor C010ES - жим ногами/икроножные
Кроссовер Bronze Gym D-005 Главная Силовые тренажеры Кроссовер Bronze Gym D-005
1.0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 10warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | cv_max_ap |
---|---|---|---|---|
0 | 0 | - | - | 0.7655 |
1.0 | 428 | - | 0.0056 | 1.0 |
1.1682 | 500 | 0.0078 | - | - |
2.0 | 856 | - | 0.0015 | 1.0 |
2.3364 | 1000 | 0.0019 | - | - |
3.0 | 1284 | - | 0.0011 | 1.0 |
3.5047 | 1500 | 0.0013 | - | - |
4.0 | 1712 | - | 0.0007 | 1.0 |
4.6729 | 2000 | 0.001 | - | - |
5.0 | 2140 | - | 0.0004 | 1.0 |
5.8411 | 2500 | 0.0008 | - | - |
6.0 | 2568 | - | 0.0002 | 1.0 |
7.0 | 2996 | - | 0.0002 | 1.0 |
7.0093 | 3000 | 0.0007 | - | - |
8.0 | 3424 | - | 0.0001 | 1.0 |
8.1776 | 3500 | 0.0006 | - | - |
9.0 | 3852 | - | 0.0001 | 1.0 |
9.3458 | 4000 | 0.0005 | - | - |
10.0 | 4280 | - | 0.0001 | 1.0 |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu118
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}