|
---
|
|
base_model: cointegrated/rubert-tiny2
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- cosine_accuracy
|
|
- cosine_accuracy_threshold
|
|
- cosine_f1
|
|
- cosine_f1_threshold
|
|
- cosine_precision
|
|
- cosine_recall
|
|
- cosine_ap
|
|
- dot_accuracy
|
|
- dot_accuracy_threshold
|
|
- dot_f1
|
|
- dot_f1_threshold
|
|
- dot_precision
|
|
- dot_recall
|
|
- dot_ap
|
|
- manhattan_accuracy
|
|
- manhattan_accuracy_threshold
|
|
- manhattan_f1
|
|
- manhattan_f1_threshold
|
|
- manhattan_precision
|
|
- manhattan_recall
|
|
- manhattan_ap
|
|
- euclidean_accuracy
|
|
- euclidean_accuracy_threshold
|
|
- euclidean_f1
|
|
- euclidean_f1_threshold
|
|
- euclidean_precision
|
|
- euclidean_recall
|
|
- euclidean_ap
|
|
- max_accuracy
|
|
- max_accuracy_threshold
|
|
- max_f1
|
|
- max_f1_threshold
|
|
- max_precision
|
|
- max_recall
|
|
- max_ap
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:13690
|
|
- loss:ContrastiveLoss
|
|
widget:
|
|
- source_sentence: Грузоблочный тренажер Bronze Gym D-015 - жим ногами в Москве Силовые
|
|
тренажеры Грузоблочные Bronze Gym D-015 - жим ногами
|
|
sentences:
|
|
- Трицепс-машина Matrix G3-S45 Главная Силовые тренажеры Трицепс-машина Matrix G3-S45
|
|
- Верхняя тяга Iron Bull IR-TE08 nan Силовые тренажеры Грузоблочные тренажеры
|
|
- Горизонтальный велоэргометр Matrix Lifestyle с консолью LED nan Велотренажеры
|
|
Matrix
|
|
- source_sentence: Эллиптический тренажер Precor EFX 731 nan Эллиптические тренажеры
|
|
Precor
|
|
sentences:
|
|
- Беговая дорожка коммерческая AeroFit X3-T 10″LCD в Москве Кардиотренажеры Беговые
|
|
дорожки AeroFit X3-T 10″LCD
|
|
- Машина Смита Matrix G1-FW161 Главная Силовые тренажеры Машина Смита Matrix G1-FW161
|
|
- Эллиптический тренажер CardioPower X75 Главная Эллиптические тренажеры Бренды
|
|
- source_sentence: Велотренажер Clear Fit Envy CFB 45 Ego Главная Велотренажеры Бренды
|
|
sentences:
|
|
- Велотренажер Spirit Fitness MU100 реабилитационный в Москве Кардиотренажеры Велотренажеры
|
|
Spirit Fitness MU100 реабилитационный
|
|
- Многофункциональная блочная станция Teca SP785C Две Гребных тяги nan Силовые тренажеры
|
|
Мультистанции
|
|
- Беговая дорожка Sports Art T670 Главная Беговые дорожки Бренды
|
|
- source_sentence: Горизонтальный велотренажер TRUE C400 Главная Велотренажеры Бренды
|
|
sentences:
|
|
- Велотренажер UltraGym UG-B002 nan Велотренажеры UltraGym
|
|
- Грузоблочный тренажер Precor DSL505 - задние дельты/баттерфляй в Москве Силовые
|
|
тренажеры Грузоблочные Precor DSL505 - задние дельты/баттерфляй
|
|
- Беговая дорожка Hasttings LCT80 Беговые дорожки Hasttings Hasttings LCT80
|
|
- source_sentence: Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая
|
|
дорожка Hasttings CT100
|
|
sentences:
|
|
- Вертикальная тяга RangeMax CST-018 nan Силовые тренажеры Грузоблочные тренажеры
|
|
- Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910
|
|
- Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды
|
|
model-index:
|
|
- name: SentenceTransformer based on cointegrated/rubert-tiny2
|
|
results:
|
|
- task:
|
|
type: binary-classification
|
|
name: Binary Classification
|
|
dataset:
|
|
name: cv
|
|
type: cv
|
|
metrics:
|
|
- type: cosine_accuracy
|
|
value: 1.0
|
|
name: Cosine Accuracy
|
|
- type: cosine_accuracy_threshold
|
|
value: 0.7240798473358154
|
|
name: Cosine Accuracy Threshold
|
|
- type: cosine_f1
|
|
value: 1.0
|
|
name: Cosine F1
|
|
- type: cosine_f1_threshold
|
|
value: 0.7240798473358154
|
|
name: Cosine F1 Threshold
|
|
- type: cosine_precision
|
|
value: 1.0
|
|
name: Cosine Precision
|
|
- type: cosine_recall
|
|
value: 1.0
|
|
name: Cosine Recall
|
|
- type: cosine_ap
|
|
value: 1.0
|
|
name: Cosine Ap
|
|
- type: dot_accuracy
|
|
value: 1.0
|
|
name: Dot Accuracy
|
|
- type: dot_accuracy_threshold
|
|
value: 0.7240797877311707
|
|
name: Dot Accuracy Threshold
|
|
- type: dot_f1
|
|
value: 1.0
|
|
name: Dot F1
|
|
- type: dot_f1_threshold
|
|
value: 0.7240797877311707
|
|
name: Dot F1 Threshold
|
|
- type: dot_precision
|
|
value: 1.0
|
|
name: Dot Precision
|
|
- type: dot_recall
|
|
value: 1.0
|
|
name: Dot Recall
|
|
- type: dot_ap
|
|
value: 1.0
|
|
name: Dot Ap
|
|
- type: manhattan_accuracy
|
|
value: 1.0
|
|
name: Manhattan Accuracy
|
|
- type: manhattan_accuracy_threshold
|
|
value: 9.055404663085938
|
|
name: Manhattan Accuracy Threshold
|
|
- type: manhattan_f1
|
|
value: 1.0
|
|
name: Manhattan F1
|
|
- type: manhattan_f1_threshold
|
|
value: 9.055404663085938
|
|
name: Manhattan F1 Threshold
|
|
- type: manhattan_precision
|
|
value: 1.0
|
|
name: Manhattan Precision
|
|
- type: manhattan_recall
|
|
value: 1.0
|
|
name: Manhattan Recall
|
|
- type: manhattan_ap
|
|
value: 1.0
|
|
name: Manhattan Ap
|
|
- type: euclidean_accuracy
|
|
value: 1.0
|
|
name: Euclidean Accuracy
|
|
- type: euclidean_accuracy_threshold
|
|
value: 0.6519391536712646
|
|
name: Euclidean Accuracy Threshold
|
|
- type: euclidean_f1
|
|
value: 1.0
|
|
name: Euclidean F1
|
|
- type: euclidean_f1_threshold
|
|
value: 0.6519391536712646
|
|
name: Euclidean F1 Threshold
|
|
- type: euclidean_precision
|
|
value: 1.0
|
|
name: Euclidean Precision
|
|
- type: euclidean_recall
|
|
value: 1.0
|
|
name: Euclidean Recall
|
|
- type: euclidean_ap
|
|
value: 1.0
|
|
name: Euclidean Ap
|
|
- type: max_accuracy
|
|
value: 1.0
|
|
name: Max Accuracy
|
|
- type: max_accuracy_threshold
|
|
value: 9.055404663085938
|
|
name: Max Accuracy Threshold
|
|
- type: max_f1
|
|
value: 1.0
|
|
name: Max F1
|
|
- type: max_f1_threshold
|
|
value: 9.055404663085938
|
|
name: Max F1 Threshold
|
|
- type: max_precision
|
|
value: 1.0
|
|
name: Max Precision
|
|
- type: max_recall
|
|
value: 1.0
|
|
name: Max Recall
|
|
- type: max_ap
|
|
value: 1.0
|
|
name: Max Ap
|
|
---
|
|
|
|
# SentenceTransformer based on cointegrated/rubert-tiny2
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) <!-- at revision dad72b8f77c5eef6995dd3e4691b758ba56b90c3 -->
|
|
- **Maximum Sequence Length:** 2048 tokens
|
|
- **Output Dimensionality:** 312 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
(2): Normalize()
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("sentence_transformers_model_id")
|
|
# Run inference
|
|
sentences = [
|
|
'Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая дорожка Hasttings CT100',
|
|
'Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды',
|
|
'Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 312]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Binary Classification
|
|
* Dataset: `cv`
|
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:-----------------------------|:--------|
|
|
| cosine_accuracy | 1.0 |
|
|
| cosine_accuracy_threshold | 0.7241 |
|
|
| cosine_f1 | 1.0 |
|
|
| cosine_f1_threshold | 0.7241 |
|
|
| cosine_precision | 1.0 |
|
|
| cosine_recall | 1.0 |
|
|
| cosine_ap | 1.0 |
|
|
| dot_accuracy | 1.0 |
|
|
| dot_accuracy_threshold | 0.7241 |
|
|
| dot_f1 | 1.0 |
|
|
| dot_f1_threshold | 0.7241 |
|
|
| dot_precision | 1.0 |
|
|
| dot_recall | 1.0 |
|
|
| dot_ap | 1.0 |
|
|
| manhattan_accuracy | 1.0 |
|
|
| manhattan_accuracy_threshold | 9.0554 |
|
|
| manhattan_f1 | 1.0 |
|
|
| manhattan_f1_threshold | 9.0554 |
|
|
| manhattan_precision | 1.0 |
|
|
| manhattan_recall | 1.0 |
|
|
| manhattan_ap | 1.0 |
|
|
| euclidean_accuracy | 1.0 |
|
|
| euclidean_accuracy_threshold | 0.6519 |
|
|
| euclidean_f1 | 1.0 |
|
|
| euclidean_f1_threshold | 0.6519 |
|
|
| euclidean_precision | 1.0 |
|
|
| euclidean_recall | 1.0 |
|
|
| euclidean_ap | 1.0 |
|
|
| max_accuracy | 1.0 |
|
|
| max_accuracy_threshold | 9.0554 |
|
|
| max_f1 | 1.0 |
|
|
| max_f1_threshold | 9.0554 |
|
|
| max_precision | 1.0 |
|
|
| max_recall | 1.0 |
|
|
| **max_ap** | **1.0** |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 13,690 training samples
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence1 | sentence2 | score |
|
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
|
| type | string | string | float |
|
|
| details | <ul><li>min: 14 tokens</li><li>mean: 29.13 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 29.18 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
|
|
* Samples:
|
|
| sentence1 | sentence2 | score |
|
|
|:------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
|
| <code>Велотренажер аэродинамический Spirit Fitness AB900+ Air Bike в Москве Кардиотренажеры Велотренажеры Spirit Fitness AB900+ Air Bike</code> | <code>Велотренажер IZHIMIO СL 1500 Главная Велотренажеры Бренды</code> | <code>1.0</code> |
|
|
| <code>Эллиптический тренажер Sports Art E835 Главная Эллиптические тренажеры Бренды</code> | <code>Степпер Matrix C7XI в Москве Кардиотренажеры Степперы Matrix C7XI</code> | <code>0.0</code> |
|
|
| <code>Мультистанция Nohrd SlimBeam nan Силовые тренажеры Мультистанции</code> | <code>Эллиптический тренажер Koenigsmann JX-170EF в Москве Кардиотренажеры Эллиптические тренажеры Koenigsmann JX-170EF</code> | <code>0.0</code> |
|
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
|
```json
|
|
{
|
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
|
"margin": 0.5,
|
|
"size_average": true
|
|
}
|
|
```
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 28 evaluation samples
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
|
* Approximate statistics based on the first 28 samples:
|
|
| | sentence1 | sentence2 | score |
|
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
|
| type | string | string | float |
|
|
| details | <ul><li>min: 15 tokens</li><li>mean: 27.18 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 28.0 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.61</li><li>max: 1.0</li></ul> |
|
|
* Samples:
|
|
| sentence1 | sentence2 | score |
|
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:-----------------|
|
|
| <code>Беговая дорожка Carbon Yukon Беговые дорожки Carbon Carbon Yukon</code> | <code>Беговая дорожка Hasttings LCT80 Беговые дорожки Hasttings Hasttings LCT80</code> | <code>1.0</code> |
|
|
| <code>Беговая дорожка Беговая дорожка DFC BOSS I T-B1 для реабилитации Беговые дорожки DFC Беговая дорожка DFC BOSS I T-B1 для реабилитации</code> | <code>Беговая дорожка EVO FITNESS Cosmo 5 Главная Беговые дорожки Бренды</code> | <code>1.0</code> |
|
|
| <code>Грузоблочный тренажер Precor C010ES - жим ногами/икроножные в Москве Силовые тренажеры Грузоблочные Precor C010ES - жим ногами/икроножные</code> | <code>Кроссовер Bronze Gym D-005 Главная Силовые тренажеры Кроссовер Bronze Gym D-005</code> | <code>1.0</code> |
|
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
|
```json
|
|
{
|
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
|
"margin": 0.5,
|
|
"size_average": true
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: epoch
|
|
- `per_device_train_batch_size`: 32
|
|
- `per_device_eval_batch_size`: 32
|
|
- `num_train_epochs`: 10
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: epoch
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 32
|
|
- `per_device_eval_batch_size`: 32
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 10
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `eval_use_gather_object`: False
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | loss | cv_max_ap |
|
|
|:------:|:----:|:-------------:|:------:|:---------:|
|
|
| 0 | 0 | - | - | 0.7655 |
|
|
| 1.0 | 428 | - | 0.0056 | 1.0 |
|
|
| 1.1682 | 500 | 0.0078 | - | - |
|
|
| 2.0 | 856 | - | 0.0015 | 1.0 |
|
|
| 2.3364 | 1000 | 0.0019 | - | - |
|
|
| 3.0 | 1284 | - | 0.0011 | 1.0 |
|
|
| 3.5047 | 1500 | 0.0013 | - | - |
|
|
| 4.0 | 1712 | - | 0.0007 | 1.0 |
|
|
| 4.6729 | 2000 | 0.001 | - | - |
|
|
| 5.0 | 2140 | - | 0.0004 | 1.0 |
|
|
| 5.8411 | 2500 | 0.0008 | - | - |
|
|
| 6.0 | 2568 | - | 0.0002 | 1.0 |
|
|
| 7.0 | 2996 | - | 0.0002 | 1.0 |
|
|
| 7.0093 | 3000 | 0.0007 | - | - |
|
|
| 8.0 | 3424 | - | 0.0001 | 1.0 |
|
|
| 8.1776 | 3500 | 0.0006 | - | - |
|
|
| 9.0 | 3852 | - | 0.0001 | 1.0 |
|
|
| 9.3458 | 4000 | 0.0005 | - | - |
|
|
| 10.0 | 4280 | - | 0.0001 | 1.0 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.8
|
|
- Sentence Transformers: 3.1.0
|
|
- Transformers: 4.44.2
|
|
- PyTorch: 2.4.1+cu118
|
|
- Accelerate: 0.34.2
|
|
- Datasets: 3.0.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### ContrastiveLoss
|
|
```bibtex
|
|
@inproceedings{hadsell2006dimensionality,
|
|
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
|
|
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
|
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
|
year={2006},
|
|
volume={2},
|
|
number={},
|
|
pages={1735-1742},
|
|
doi={10.1109/CVPR.2006.100}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |