URDU-ASR-25-EPOCH / README.md
Shehryar718's picture
End of training
3f5a4c5
|
raw
history blame
3.49 kB
---
base_model: Shehryar718/URDU-ASR
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: URDU-ASR-25-EPOCH
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: ur
split: test
args: ur
metrics:
- name: Wer
type: wer
value: 0.47599520290920344
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# URDU-ASR-25-EPOCH
This model is a fine-tuned version of [Shehryar718/URDU-ASR](https://huggingface.co/Shehryar718/URDU-ASR) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6782
- Wer: 0.4760
- Cer: 0.1986
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 5.3707 | 1.0 | 341 | 1.3583 | 0.8266 | 0.3484 |
| 0.4814 | 2.0 | 683 | 0.7213 | 0.5187 | 0.2196 |
| 0.2821 | 3.0 | 1024 | 0.6354 | 0.4917 | 0.2066 |
| 0.2368 | 4.0 | 1366 | 0.6730 | 0.5122 | 0.2181 |
| 0.2105 | 5.0 | 1707 | 0.6430 | 0.4871 | 0.2076 |
| 0.1965 | 6.0 | 2049 | 0.6397 | 0.4902 | 0.2136 |
| 0.1879 | 7.0 | 2390 | 0.6397 | 0.4698 | 0.1951 |
| 0.1743 | 8.0 | 2732 | 0.6636 | 0.4739 | 0.1996 |
| 0.1632 | 9.0 | 3073 | 0.6752 | 0.4782 | 0.1996 |
| 0.1572 | 10.0 | 3415 | 0.6859 | 0.4874 | 0.2072 |
| 0.1586 | 11.0 | 3756 | 0.6761 | 0.4844 | 0.2069 |
| 0.1595 | 12.0 | 4098 | 0.6846 | 0.4746 | 0.1959 |
| 0.1534 | 13.0 | 4439 | 0.6750 | 0.4830 | 0.2034 |
| 0.16 | 14.0 | 4781 | 0.6653 | 0.4826 | 0.2038 |
| 0.1752 | 15.0 | 5122 | 0.6536 | 0.4727 | 0.1946 |
| 0.1739 | 16.0 | 5464 | 0.6753 | 0.4738 | 0.1912 |
| 0.1709 | 17.0 | 5805 | 0.6600 | 0.4730 | 0.1996 |
| 0.1676 | 18.0 | 6147 | 0.6691 | 0.4678 | 0.1919 |
| 0.1636 | 19.0 | 6488 | 0.6638 | 0.4772 | 0.1990 |
| 0.1593 | 20.0 | 6830 | 0.6787 | 0.4764 | 0.1976 |
| 0.1588 | 21.0 | 7171 | 0.6699 | 0.4772 | 0.1974 |
| 0.1525 | 22.0 | 7513 | 0.6827 | 0.4738 | 0.1962 |
| 0.1554 | 23.0 | 7854 | 0.6740 | 0.4736 | 0.1970 |
| 0.1522 | 24.0 | 8196 | 0.6791 | 0.4768 | 0.1989 |
| 0.1502 | 24.96 | 8525 | 0.6782 | 0.4760 | 0.1986 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.4
- Tokenizers 0.14.1