metadata
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_afr_corr_5e-06
results: []
furina_afr_corr_5e-06
This model is a fine-tuned version of yihongLiu/furina on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0213
- Spearman Corr: 0.7660
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
---|---|---|---|---|
No log | 0.85 | 200 | 0.0813 | 0.0483 |
No log | 1.69 | 400 | 0.0439 | 0.3738 |
0.1125 | 2.54 | 600 | 0.0360 | 0.6162 |
0.1125 | 3.38 | 800 | 0.0287 | 0.6660 |
0.035 | 4.23 | 1000 | 0.0271 | 0.6987 |
0.035 | 5.07 | 1200 | 0.0248 | 0.7139 |
0.035 | 5.92 | 1400 | 0.0252 | 0.7230 |
0.026 | 6.77 | 1600 | 0.0246 | 0.7173 |
0.026 | 7.61 | 1800 | 0.0230 | 0.7344 |
0.0227 | 8.46 | 2000 | 0.0236 | 0.7361 |
0.0227 | 9.3 | 2200 | 0.0223 | 0.7470 |
0.0203 | 10.15 | 2400 | 0.0227 | 0.7462 |
0.0203 | 10.99 | 2600 | 0.0224 | 0.7477 |
0.0203 | 11.84 | 2800 | 0.0242 | 0.7483 |
0.0186 | 12.68 | 3000 | 0.0218 | 0.7537 |
0.0186 | 13.53 | 3200 | 0.0229 | 0.7528 |
0.0175 | 14.38 | 3400 | 0.0227 | 0.7552 |
0.0175 | 15.22 | 3600 | 0.0221 | 0.7602 |
0.0163 | 16.07 | 3800 | 0.0216 | 0.7612 |
0.0163 | 16.91 | 4000 | 0.0216 | 0.7619 |
0.0163 | 17.76 | 4200 | 0.0217 | 0.7616 |
0.0154 | 18.6 | 4400 | 0.0215 | 0.7612 |
0.0154 | 19.45 | 4600 | 0.0212 | 0.7651 |
0.0146 | 20.3 | 4800 | 0.0216 | 0.7634 |
0.0146 | 21.14 | 5000 | 0.0213 | 0.7641 |
0.0141 | 21.99 | 5200 | 0.0223 | 0.7629 |
0.0141 | 22.83 | 5400 | 0.0213 | 0.7664 |
0.0141 | 23.68 | 5600 | 0.0214 | 0.7635 |
0.0134 | 24.52 | 5800 | 0.0214 | 0.7649 |
0.0134 | 25.37 | 6000 | 0.0216 | 0.7637 |
0.013 | 26.22 | 6200 | 0.0214 | 0.7644 |
0.013 | 27.06 | 6400 | 0.0213 | 0.7656 |
0.013 | 27.91 | 6600 | 0.0214 | 0.7661 |
0.0127 | 28.75 | 6800 | 0.0212 | 0.7655 |
0.0127 | 29.6 | 7000 | 0.0213 | 0.7660 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2